Leng et al.
JOCArticle
optical resolution.4 Using the lipase (Novozym 453) from
Candida antarctica as a biocatalyst, Zwanenburg and co-
workers have reported that racemic methyl N-alkylazetidine-
2-carboxylates are resolved in an ammoniolysis reaction with
good enantioselectivity in tert-butyl alcohol at 35 °C.5 Ester-
ase-catalyzed hydrolysis of racemic N-substituted azetidine-2-
carboxylic acid esters has also been used to prepare optically
active N-substituted azetidine-2-carboxylic acid compounds
with moderate to good enantioselectivity.6
enantioselectively transform a variety of racemic nitriles into
highly enantiopure carboxylic acids and amides. Using the
highly enantioselective nitrile biotransformation approach,
many structurally diverse acids and amides that contain a
three-membered ring such as cyclopropane,12 epoxide,13 and
aziridine14 have been synthesized. Our interests in small ring
compounds12-14 and in exploration of nitrile biotransforma-
tions in organic synthesis led us to undertake the current
study. Herein, we report biotransformations of racemic
azetidine-2-carbonitriles, a highly efficient method for the
preparation of enantiopure azetidine-2-carboxylix acids and
amides, and their applications in synthesis.
Biotransformations of nitriles,7 either through a direct
conversion from a nitrile to a carboxylic acid catalyzed by a
nitrilase or through the nitrile hydratase-catalyzed hydration
of a nitrile followed by the amide hydrolysis catalyzed by the
amidase, have become the effective and environmentally
benign methods for the production of carboxylic acids and
their amide derivatives. One of the well-known examples is
the industrial production of acrylamide from biocatalytic
hydration of acrylonitrile.8 Recent studies have demon-
strated that biotransformations of nitriles complement the
existing asymmetric chemical and enzymatic methods for the
synthesis of chiral carboxylic acids and their derivatives.9,10
One of the distinct features of enzymatic transformations of
nitriles is the straightforward generation of enantiopure
amides, valuable organo-nitrogen compounds in synthetic
chemistry, in addition to the formation of enantiopure
carboxylic acids. For example, we9c have shown that Rho-
dococcus erythropolis AJ270,11 a nitrile hydratase/amidase-
containing whole cell catalyst, is able to efficiently and
Results and Discussion
We initially examined the biotransformation of racemic
1-benzylazetidine-2-carbonitrile 1a. To facilitate the isola-
tion of product, acid 3a was converted into its methyl ester
with CH2N2 (Table 1). It was found that, catalyzed by
Rhodococcus erythropolis AJ270 whole cell catalyst in neu-
tral aqueous potassium phosphate buffer at 30 °C, hydrolysis
of 1 proceeded very efficiently and enantioselectively. Within
about 3.25 h, for example, enantiopure 1-benzylazetidien-2-
carboxamide S-2a and methyl 1-benzylazetidien-2-carbox-
ylate R-4a were obtained in good yield (entry 1, Table 1). To
study the effect of the substituent of benzyl on the reaction,
racemic nitrile analogues 1b-f were prepared according to a
literature precedure3a and subjected to biotransformations.
As indicated by Table 1, irrespective of the electronic nature
of the substituent on the benzyl, substrates 1b-e tested
underwent very rapid biotransformations to afford the
corresponding amides S-2b-e and esters R-4b-e in high
yields (entries 3-6, Table 1). Only when the substrate con-
tains a 1-(2-bromobenzyl) group did the biotransformation
of 1f proceed very sluggishly. Excellent yields of S-2f and
R-3f were achieved after 5 days of incubation of 1f with
microbial whole cell catalyst (entry 7, Table 1). It is note-
worthy that all nitrile biotransformations produced highly
enantiomerically enriched amide and acid products with an
enantiomeric ratio E15 being higher than 89, indicating
excellent enantioselectivity of nitrile biotransformations.
The biocatalytic reaction was also readily scaled up. This
has been demonstrated by a gram scale preparation of
enantiopure 1-benzylazetidien-2-carboxamide S-2a and
methyl 1-benzylazetidien-2-carboxylate R-4a in good yield
(entry 3, Table 1).
(4) Barth, P.; Pfenninger, A. U.S. Patent 6143903, 2000.
(5) Starmans, W. A. J.; Walgers, R. W. A.; Thijs, L.; de Gelder, R.; Smits,
J. M. M.; Zwanenburg, B. Tetrahedron: Asymmetry 1998, 9, 429.
(6) Takashima, Y.; Kudo, J.; Hazama, M.; Inoue, A. Eur. Pat. Appl.
0974670A2, 2000.
(7) For overviews, see: (a) Kobayashi, M.; Shimizu, S. FEMS Microbiol.
Lett. 1994, 120, 217. (b) Meth-Cohn, O.; Wang, M.-X. J. Chem. Soc., Perkin
Trans. 1 1997, 1099. (c) Meth-Cohn, O.; Wang, M.-X. J. Chem. Soc., Perkin
Trans. 1, 1997, 3197 and references cited therein.
(8) Nagasawa, T.; Schimizu, H.; Yamada, H. Appl. Microbiol. Biotechnol.
1993, 40, 189.
(9) For reviews, see: (a) Sugai, T.; Yamazaki, T.; Yokoyama, M.; Ohta,
H. Biosci., Biotechnol., Biochem. 1997, 61, 1419. (b) Martinkova, L.; Kren, V.
Biocatal. Biotranforms. 2002, 20, 73. (c) Wang, M.-X. Top. Catal. 2005, 35,
117.
(10) For recent examples, see: (a) DeSantis, G.; Zhu, Z.; Greenberg,
W. A.; Wong, K.; Chaplin, J.; Hanson, S. R.; Farwell, B.; Nicholson, L. W.;
Rand, C. L.; Weiner, D. P.; Robertson, D. E.; Burk, M. J. J. Am. Chem. Soc.
2002, 124, 9024. (b) Effenberger, F.; Osswald, S. Tetrahedron: Asymmetry
2001, 12, 279. (c) Hann, E. C.; Sigmund, A. E.; Fager, S. K.; Cooling, F. B.;
Gavagan, J. E.; Ben-Bassat, A.; Chauhan, S.; Payne, M. S.; Hennessey,
S. M.; DiCosimo, R. Adv. Synth. Catal. 2003, 345, 775. (d) Preiml, M.;
Hillmayer, K.; Klempier, N. Tetrahedron Lett. 2003, 44, 5057. (e) Yokoya-
ma, M.; Kashiwagi, M.; Iwasaki, M.; Fushuku, K.; Ohta, H.; Sugai, T.
Tetrahedron: Asymmetry 2004, 15, 2817. (f) Wang, M.-X.; Lu, G.; Ji, G.-J.;
Huang, Z.-T.; Meth-Cohn, O.; Colby, J. Tetrahedron: Asymmetry 2000, 11,
1123. (g) Wang, M.-X.; Li, J.-J.; Ji, G.-J.; Li, J.-S. J. Mol. Catal. B: Enzym.
2001, 14, 77. (h) Wang, M.-X.; Zhao, S.-M. Tetrahedron Lett. 2002, 43, 6617.
(i) Wang, M.-X.; Zhao, S.-M. Tetrahedron: Asymmetry 2002, 13, 1695. ( j)
Wang, M.-X.; Lin, S.-J. J. Org. Chem. 2002, 67, 6542. (k) Wang, M.-X.; Lin,
S.-J.; Liu, J.; Zheng, Q.-Y. Adv. Synth. Catal. 2004, 346, 439. (l) Wang, M.-
X.; Liu, J.; Wang, D.-X.; Zheng, Q.-Y. Tetrahedron: Asymmetry 2005, 16,
2409. (m) Gao, M.; Wang, D.-X.; Zheng, Q.-Y.; Huang, Z.-T.; Wang, M.-X.
J. Org. Chem. 2007, 72, 6060. (n) Wang, M.-X.; Wu, Y. Org. Biomol. Chem.
2003, 1, 535. (o) Gao, M.; Wang, D.-X.; Zheng, Q.-Y.; Wang, M.-X. J. Org.
Chem. 2006, 71, 9532. (p) Ma, D.-Y.; Zheng, Q.-Y.; Wang, D.-X.; Wang, M.-
X. Org. Lett. 2006, 8, 3231. (q) Ma, D.-Y.; Wang, D.-X.; Zheng, Q.-Y.;
Wang, M.-X. Tetrahedron: Asymmetry 2006, 17, 2366. (r) Ma, D.-Y.; Wang,
D.-X.; Pan, J.; Huang, Z.-T.; Wang, M.-X. Tetrahedron: Asymmetry 2008,
19, 322. (s) Ma, D.-Y.; Wang, D.-X.; Pan, J.; Huang, Z.-T.; Wang, M.-X. J.
Org. Chem. 2008, 73, 4087.
To understand the catalytic efficiency and stereochemistry
of the nitrile hydratase and the amidase involved in Rhodo-
coccus erythropolis AJ270, kinetic resolution of nitrile
(12) (a) Wang, M.-X.; Feng, G.-Q. Tetrahedron Lett. 2000, 41, 6501. (b)
Wang, M.-X.; Feng, G.-Q. New J. Chem. 2002, 1575. (c) Wang, M.-X.; Feng,
G.-Q. J. Org. Chem. 2003, 68, 621–624. (d) Wang, M.-X.; Feng, G.-Q. J. Mol.
Catal. B: Enzym. 2002, 18, 267. (e) Wang, M.-X.; Feng, G.-Q.; Zheng, Q.-Y.
Adv. Synth. Catal. 2003, 345, 695. (f) Wang, M.-X.; Feng, G.-Q.; Zheng, Q.-
Y. Tetrahedron: Asymmetry 2004, 15, 347. (g) Feng, G.-Q.; Wang, D.-X.;
Zheng, Q.-Y.; Wang, M.-X. Tetrahedron: Asymmetry 2006, 17, 2775.
(13) (a) Wang, M.-X.; Lin, S.-J.; Liu, C.-S.; Zheng, Q.-Y.; Li, J.-S. J. Org.
Chem. 2003, 68, 4570. (b) Wang, M.-X.; Deng, G.; Wang, D.-X.; Zheng, Q.-
Y. J. Org. Chem. 2005, 70, 2439.
(14) (a) Wang, J.-Y.; Wang, D.-X.; Zheng, Q.-Y.; Huang, Z.-T.; Wang,
M.-X. J. Org. Chem. 2007, 72, 2040. (b) Wang, J.-Y.; Wang, D.-X.; Pan, J.;
Huang, Z.-T.; Wang, M.-X. J. Org. Chem. 2007, 72, 9391.
(15) (a) Chen, C.-S.; Fujimoto, Y.; Girdaukas, G.; Sih, C. J. J. Am. Chem.
Soc. 1982, 104, 7294. (b) Program “Selectivity” by: Faber, K.; Hoenig, H. http://
(11) (a) Blakey, A. J.; Colby, J.; Williams, E.; O’Reilly, C. FEMS
Microbiol. Lett. 1995, 129, 57. (b) Colby, J.; Snell, D.; Black, G. W. Monatsh.
Chem. 2000, 131, 655. (c) O’Mahony, R.; Doran, J.; Coffey, L.; Cahill, O. J.;
Black, G. W.; O’Reilly, C. Antonie van Leeuwenhoek 2005, 87, 221.
6078 J. Org. Chem. Vol. 74, No. 16, 2009