Published on Web 07/22/2009
Regiospecific and Stereoselective Syntheses of (() Morphine,
Codeine, and Thebaine via a Highly Stereocontrolled
Intramolecular 4 + 2 Cycloaddition Leading to a
Phenanthrofuran System
Gilbert Stork,* Ayako Yamashita,† Julian Adams,‡ Gary R. Schulte,§
Richard Chesworth,| Yoji Miyazaki,⊥ and Jay J. Farmer¶
Department of Chemistry, Columbia UniVersity, New York, New York
Received May 12, 2009; E-mail: gjs8@columbia.edu
Abstract: Total syntheses of the morphine alkaloids are described that use a direct stereoselective formation
of the phenanthrofuran system via an intramolecular 4 + 2 cycloaddition of a diene tethered to the 4-position
of a 7-methoxybenzofuran-3-carboxylic acid ester.
substituted benzofuran ring.5 Our work on that eventually
successful approach is sketched in Figure 1.
Introduction
Over half a century ago, the total synthesis of morphine was
accomplished by Marshall Gates.1a A very large number of total
syntheses of natural products have been carried out since that
time, often with the goal of making medically significant natural
substances more available. Efficiency was clearly a major
concern. Frequently, however, the fascination of a synthesis
target comes from the architectural challenges presented by an
intricate structure, and originality of design is the goal.
In the case of the morphine alkaloids,2 the specific structural
challenge of having four rings sharing the same carbon atom is
further complicated by their propensity to undergo sometimes
spectacular rearrangements.3 In any case, it is remarkable that
numerous total syntheses of morphine (1) and/or its relatives,
codeine (2), and thebaine (3), have been reported in the literature
between the 1952 Gates synthesis and the latest publication in
2009.1
Stereochemical Suitability of the Intramolecular Diels-Alder
Route. Two questions arose as we considered such an intramo-
lecular 4 + 2 cycloaddition. First, the nature of R, which
eventually has to be transformed into an ethanamine chain
connected to ring B. A carbomethoxy group appeared to be
(1) (a) Gates, M.; Tschudi, G. J. Am. Chem. Soc. 1952, 74, 1109–1110.
1956, 78, 1380-1393. (b) Elad, D.; Ginsburg, D. J. Am. Chem. Soc.
1954, 76, 312–313. (c) Grewe, R.; Fischer, H. Chem Ber. 1963, 96,
1520–1528. (d) Grewe, R.; Friedrichsen, W. Chem. Ber. 1967, 100,
1550–1558. (e) Barton, D. H. R.; Bhakuni, D. S.; James, R.; Kirby,
G. W. J. Chem. Soc. C 1967, 128–132. (f) Morrison, G. C.; Waite,
R. O.; Shavel, J., Jr. Tetrahedron Lett. 1967, 8, 4055–4056. (g)
Kametani, T.; Ihara, M.; Fukumoto, K.; Yagi, H. J. Chem. Soc. C
1969, 2030–2033. (h) Schwartz, M. A.; Mami, I. S. J. Am. Chem.
Soc. 1975, 97, 1239–1240. (i) Beyerman, H. C.; Lie, T. S.; Maat, M.;
Bosman, H. H.; Buurman, E.; Bijsterveld, E. J. M. Recl. TraV. Chim.
Pays-Bas 1976, 95, 24–25. Lie, T. S.; Maat, L.; Beyerman, H. C. Recl.
TraV. Chim. Pays-Bas 1979, 98, 419–420. (j) Rice, K. C. J. Org. Chem.
1980, 45, 3135–3137. (k) Evans, D. A.; Mitch, C. H. Tetrahedron
Lett. 1982, 285–288. (l) Moos, W. H.; Gless, R. D.; Rapoport, H. J.
Org. Chem. 1983, 48, 227–238. (m) White, J. D.; Caravatti, G.; Kline,
T. B.; Edstrom, E.; Rice, K. C.; Brossi, A. Tetrahedron 1983, 39,
2393–2397. (n) Toth, J. E.; Fuchs, P. L. J. Org. Chem. 1987, 52, 473–
475. J. Org. Chem. 1988, 53, 4694. (o) Tius, M. A.; Kerr, M. A. J. Am.
Chem. Soc. 1992, 114, 5959–5966. (p) Parker, K. A.; Fokas, D. J. Am.
Chem. Soc. 1992, 114, 9688–9689; J. Org. Chem. 1994, 59, 3927-
3933; J. Org. Chem. 2006, 71, 449-455. (q) Hong, C. Y.; Kado, N.;
Overman, L. E. J. Am. Chem. Soc. 1993, 115, 11028–11029. Hong,
C. Y.; Overman, L. E. Tetrahedron Lett. 1994, 35, 3453–3456. (r)
Mulzer, J.; Duerner, G.; Trauner, D. Angew. Chem., Int. Ed. Engl.
1996, 35, 2830–2832. Mulzer, J.; Bats, J. W.; List, B.; Opatz, T.;
Trauner, D. Synlett 1997, 441–444. Trauner, D.; Bats, J. W.; Werner,
A.; Mulzer, J. J. Org. Chem. 1998, 63, 5908–5918. Mulzer, J.; Trauner,
D. Chirality 1999, 11, 475–482. (s) White, J. D.; Hrnciar, P.;
Stappenbeck, F. J. Org. Chem. 1997, 62, 5250–5251. J. Org. Chem.
1999, 64, 7871-7884. (t) Nagata, H.; Miyazawa, N.; Ogasawara, K.
Chem. Commun. 2001, 1094–1095. (u) Taber, D. F.; Neubert, T. D.;
Rheingold, A. L. J. Am. Chem. Soc. 2002, 124, 12416–12417. (v)
Trost, B. M.; Tang, W. J. Am. Chem. Soc. 2002, 124, 14542–14543.
Trost, B. M.; Tang, W.; Toste, F. D. J. Am. Chem. Soc. 2005, 127,
14785–14803. (w) Uchida, K.; Yokoshima, S.; Kan, T.; Fukuyama,
T. Org. Lett. 2006, 8, 5311–5313. Heterocycles 2009, 77, 1219-1234.
(x) Omori, A. T.; Finn, K. J.; Leisch, H.; Carroll, R. J; Hudlicky, T.
Synlett 2007, 2859–2862. (y) Verin, M.; Barre´, E.; Iorga, B.; Guillou,
C. Chem.sEur. J. 2008, 14, 6606–6608. (z) Tanimoto, H.; Saito, R.;
Chida, H. Tetrahedron Lett. 2008, 49, 358–362.
Our own interest in the synthesis of the morphine alkaloids4
arose because the numerous approaches followed to their
syntheses did not include the direct formation of the phenan-
throfuran ring system of morphine by the intramolecular 4 + 2
cycloaddition of a diene tethered to the C-4 of a suitably
† Columbia University, New York, NY.
‡ Infinity Pharmaceuticals, Cambridge, MA.
§ Kahuna Scientific Consulting, LLC., Stonington, CT.
| Envivo Pharmaceuticals, Watertown, MA.
⊥ University of Tokyo, Tokyo, Japan.
¶ Present address: Novomer, Ithaca, NY.
9
11402 J. AM. CHEM. SOC. 2009, 131, 11402–11406
10.1021/ja9038505 CCC: $40.75 2009 American Chemical Society