C.-S. Lee et al. / Tetrahedron Letters 50 (2009) 4558–4562
4561
Chung, J. G. Anticancer Res. 2005, 25, 4149; (d) Yu, H. H.; Kim, K. J.; Cha, J. D.;
Kim, H. K.; Lee, Y. E.; Choi, N. Y.; You, Y. O. J. Med. Food 2005, 8, 454; (e)
Letasiova, S.; Jantova, S.; Cipak, L.; Muckova, M. Cancer Lett. 2006, 239, 254; (f)
Qin, Y.; Pang, J. Y.; Chen, W. H.; Cai, Z.; Jiang, Z. H. Bioorg. Med. Chem 2006, 14,
25–32; (g) Ball, A. R.; Casadei, G.; Samosorn, S.; Bremner, J. B.; Ausubel, F. M.;
Moy, T. I.; Lewis, K. Chem. Biol. 2006, 1, 594–600; (h) Hsieh, Y. S.; Kuo, W. H.;
Lin, T. W.; Chang, H. R.; Lin, T. H.; Chen, P. N.; Chu, S. C. J. Agric. Food Chem. 2007,
55, 10437–10445.
R1
R2
R1
R2
N
N
O
O
Br
nBu3Sn
R4
R4
2. (a) González, M. C.; Zafra-Polo, M. C.; Amparo-Blázquez, M.; Serrano, A.; Cortes,
D. J. Nat. Prod. 1997, 60, 108–110; (b) Gentry, E. J.; Jampani, H. B.; Keshavarz-
Shokri, A.; Morton, M. D.; Velde, D. V.; Telikepalli, H.; Mitscher, L. A. J. Nat. Prod.
1998, 61, 1187–1193; (c) Yan, M. H.; Cheng, P.; Jiang, Z. Y.; Ma, Y. B.; Zhang, X.
M.; Zhang, F. X.; Yang, L. M.; Zheng, Y. T.; Chen, J. J. J. Nat. Prod. 2008, 71, 760–
763.
R3
R3
8a-d
2a-d
ˇ
ˇ
ˇ
3. Marek, R.; Seckárová, P.; Hulová, D.; Marek, J.; Dostál, J.; Sklenár, V. J. Nat. Prod.
2003, 66, 481–486.
R1
R2
R1
R2
4. (a) Iwasa, K.; Lee, D. U.; Kang, S. I.; Wiegrebe, W. J. Nat. Prod 1998, 61, 1150–
1153; (b) Chae, S. H.; Jeong, I. H.; Choi, D. H.; Oh, J. W.; Ahn, Y. J. J. Agric. Food
Chem. 1999, 47, 934–938; (c) Lee, H. S. J. Agric. Food Chem. 2002, 50, 7013–7016.
5. (a) Dai, J. R.; Chai, H.; Pezzuto, J. M.; Kinghorn, A. D.; Tsauri, S.; Padmawinata, K.
Phytother. Res. 1993, 7, 290–294; (b) Cortes, D.; Arbaoui, J.; Protais, P. Nat. Prod.
Lett. 1993, 3, 233–238.
6. (a) Chi, J. F.; Chu, S. H.; Lee, C. S.; Chou, N. K.; Su, M. J. Br. J. Pharmacol 1996, 118,
503–512; (b) Chi, J. F.; Chu, S. H.; Lee, C. S.; Su, M. J. Can. J. Cardiol. 1997, 13,
1103–1110.
N
N
O
O
Cu+
- e-
H
R4
R4
R3
R3
7. Chang, F. R.; Wu, Y. C. J. Nat. Prod 2005, 68, 1056.
10a-d
9a-d
8. Kuo, C. L.; Chi, C. W.; Liu, T. Y. Cancer Lett. 2004, 203, 127–137.
9. (a) Dai-Ho, G.; Mariano, P. S. J. Org. Chem 1987, 52, 704–706; (b) Chrzanowska,
M. J. Nat. Prod. 1995, 58, 401–407; (c) Sotomayor, N.; Domnguez, E.; Lete, E. J.
Org. Chem. 1996, 61, 4062–4072.
- H+
10. (a) Chakravarti, S. N.; Perkin, W. H. J. Chem. Soc. 1929, 196–201; (b) Chakravarti,
S. N. J. Indian. Chem. Soc. 1932, 577–579; (c) Lenz, G. R. J. Org. Chem. 1974, 39,
2846–2851; (d) Dorn, C. R.; Koszyk, F. J.; Lenz, G. R. J. Org. Chem. 1984, 49,
2642–2644; (e) Saa, C.; Guitian, E.; Castedo, L.; Suan, R.; Saa, J. M. J. Org. Chem.
1986, 51, 2781–2784; (f) Cobas, A.; Guitian, E.; Castedo, L. J. Org. Chem. 1992,
57, 6765–6769; (g) Venkov, A. P.; Ivanov, I. I. Tetrahedron. 1996, 52, 12299–
12308; (h) Warrener, R. N.; Liu, L.; Russell, R. A. Chem. Commun. 1997, 2173–
2174; (i) Bombrun, A.; Sageot, O. Tetrahedron Lett. 1997, 38, 1057–1060; (j)
Singh, K. N. Tetrahedron Lett. 1998, 39, 4391–4392; (k) Orito, K.; Miyazawa, M.;
Kanbayashi, R.; Tokuda, M.; Suginome, H. J. Org. Chem. 1999, 64, 6583–6596; (l)
Rodriguez, G.; Castedo, L.; Dominguez, D.; Saa, C.; Adam, W.; Saha-Möller, C. R.
J. Org. Chem. 1999, 64, 877–883; (m) Orito, K.; Satoh, Y.; Nishizawa, H.; Harada,
R.; Tokuda, M. Org. Lett. 2000, 2, 2535–2537; (n) Suau, R.; Lopez-Romero, J. M.;
Ruiz, A.; Rico, R. Tetrahedron 2000, 56, 993–998; (o) Huang, W. J.; Singh, O. V.;
Chen, C. H.; Chiou, S. Y.; Lee, S. S. Helv. Chim. Acta. 2002, 85, 1069–1078; (p)
Chrzanowska, M.; Rozwadowska, M. D. Chem. Rev. 2004, 104, 3341–3370; (q)
Le, T. N.; Gang, S. G.; Cho, W. J. J. Org. Chem. 2004, 69, 2768–2772; (r) Li, W. D.;
Yang, H. Tetrahedron 2005, 61, 5037–5042; (s) Le, T. N.; Cho, W. J. Bull. Korean
Chem. Soc 2007, 28, 763–766; (t) Grycová, L.; Dostál, J.; Marek, R.
Phytochemistry 2007, 68, 150–175; (u) Majumdar, K. C.; Basu, P. K.;
Chattopadhyay, S. K. Tetrahedron 2007, 63, 793–826; (v) Tomasevich, L. L.;
Kennedy, N. M.; Zitelli, S. M.; Hull, R. T.; Gillen, C. R.; Lam, S. K.; Baker, N. J.;
Rohanna, J. C.; Conley, J. M.; Guerra, M. L.; Starr, M. L.; Sever, J. B.; Carroll, P. J.;
Leonard, M. S. Tetrahedron Lett. 2007, 48, 599–602; (w) Le, T. N.; Cho, W. J.
Chem. Pharm. Bull. 2008, 56, 1026–1029; (x) Chang, J. K.; Chang, N. C.
Tetrahedron 2008, 64, 3483–3487.
R1
R2
N
O
R4
R3
1a-d
Scheme 5. Cu(I)-mediated radical cyclization.
treating 1 or 1.5 equiv of CuCl in n-Bu3SnH/AIBN radical-initiated
cyclization generated a mixture of 7 and 1a with only 50–56% of
the ring-closure adducts (Table 2, entries 1 and 2). Presumably
Cu(I) could activate this n-Bu3SnH/AIBN-initiated radical reaction,
and also accomplished a Cu(I)-oxidation during the cyclization
process. As shown in Scheme 4, this radical cyclization reaction
using n-Bu3SnH/AIBN and 2 equiv of CuCl yielded the desired 8-
oxoprotoberberine alkaloids 1a–d with good yields.18
In conclusion, we have developed a new method for the synthe-
sis of 8-oxoprotoberberines 1a–d. These 8-oxoprotoberberines
were formed presumably via the 6-endo cyclization of radical
intermediates 8a–d and subsequent Cu(I) oxidation of 10a–d
(Scheme 5). The Cu(I)-mediated n-Bu3SnH/AIBN radical cyclization
process is feasible to afford the oxoprotoberberine. Thus, the meth-
odology applying CuCl to radical-initiated cyclization for the
synthesis of alkaloids is noteworthy.
11. Lee, C. S.; Liu, C. K.; Chiang, Y. L.; Cheng, Y. Y. Tetrahedron Lett 2008, 49, 481–
484.
12. (a) Bischler, A.; Napieralski, B. Chem. Ber 1893, 26, 1903; (b) Fodor, G.; Gal, J.;
Phillips, B. A. Angew. Chem., Int. Ed. Engl 1972, 11, 919.
13. Eck, J. C.; Marvel, C. S. In Organic Syntheses; Blatt, A. H., Ed.; Collective Volume
II; John Wiley & Sons: New York, 1943; p 74.
14. Shriner, R. L.; Kleiderer, E. C. In Organic Syntheses; Blatt, A. H., Ed.; Collective
Volume II; John Wiley & Sons: New York, 1943; p 538.
15. (a) Uemura, M.; Nishimura, H.; Hayashi, Y. Tetrahedron Lett. 1990, 31, 2319–
2322; (b) Takano, S.; Suzuki, M.; Ogasawara, K. Heterocycles 1990, 31, 1151–
1156; (c) Nimgirawath, S.; Ponghusabun, O. Aust. J. Chem 1994, 47, 951–955.
16. (a) Clark, A. J.; Battle, G. M.; Bridge, A. Tetrahedron Lett. 2001, 42, 1999–2001;
(b) Bryans, J. S.; Chessum, N. E. A.; Huther, N.; Parsons, A. F.; Ghelfi, F.
Tetrahedron 2003, 59, 6221–6231; (c) Clark, A. J.; Geden, J. V.; Thom, S. J. Org.
Chem 2006, 71, 1471–1479; (d) Clark, A. J.; Geden, J. V.; Thom, S.; Wilson, P. J.
Org. Chem 2007, 72, 5923–5926.
17. Clark, A. J.; Wilson, P. Tetrahedron Lett 2008, 49, 4848–4850.
18. 8-Oxopseudopalmatine (1a): mp 197–198 °C (lit.10g mp 198–199 °C). IR (KBr,
cmÀ1) 1645; 1H NMR (300 MHz, CDCl3) d 2.95 (t, J = 6.3 Hz, 2H), 3.95 (s, 3H),
3.99 (s, 3H), 4.02 (s, 3H), 4.02 (s, 3H), 4.37 (t, J = 6.3 Hz, 2H), 6.75 (s, 1H), 6.84 (s,
1H), 6.95 (s, 1H), 7.25 (s, 1H), 7.81 (s, 1H); 13C NMR (75 MHz, CDCl3) d 28.16,
39.75, 56.03 (2C), 56.21 (2C), 101.06, 105.95, 107.78, 107.91, 110.59, 118.61,
122.57, 128.42, 132.16, 136.19, 148.48, 149.03, 150.16, 153.53, 161.42; LRMS
(EI, 70 eV) m/z (%) 367 (M+, 100%). 2,3-dimethoxy-8-oxoberberine (1b): mp 190–
191 °C (lit.10m mp 188–189 °C). IR (KBr, cmÀ1) 1643; 1H NMR (300 MHz, CDCl3)
d 2.95 (t, J = 6.3 Hz, 2H), 3.95 (s, 3H), 4.00 (s, 3H), 4.37 (t, J = 6.3 Hz, 2H), 6.75 (s,
1H), 6.89 (s, 1H), 7.29 (s, 1H), 7.44 (t, J = 6.9 Hz, 1H), 7.55–7.66 (m, 2H), 8.43 (d,
J = 8.1 Hz, 1H); 13C NMR (75 MHz, CDCl3) d 28.11, 39.73, 56.03, 56.27, 101.42,
107.96, 110.52, 122.33, 124.57, 125.89, 126.15, 127.97, 128.74, 132.22, 136.67,
137.42, 148.50, 150.40, 162.21; LRMS (EI, 70 eV) m/z (%) 307 (M+, 100%). 3,10-
Acknowledgement
We thank National Science Council, ROC for financial support.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. (a) Iwasa, K.; Moriyasu, M.; Yamori, T.; Turuo, T.; Lee, D. U.; Wiegrebe, W. J. Nat.
Prod. 2001, 64, 896–898; (b) Morel, C.; Stermitz, F. R.; Tegos, G.; Lewis, K. J.
Agric. Food Chem. 2003, 51, 5677–5679; (c) Lin, C. C.; Kao, S. T.; Chen, G. W.;