very high DNA binding affinities and could modulate gene
expression in cell culture from which we infer eight-ring
cycles are cell permeable.11a
An orthogonal polymerization/oligomerization strategy for
the synthesis of 1 and related polyamides is reported here.
This method affords symmetrical Py-Im polyamide mac-
rocycles from simple Py-Im building blocks in a convergent
(6) (a) Olenyuk, B. Z.; Zhang, G. J.; Klco, J. M.; Nickols, N. G.; Kaelin,
W. G.; Dervan, P. B Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 16768–16773.
(b) Kageyama, Y.; Sugiyama, H.; Ayame, H.; Iwai, A.; Fujii, Y.; Huang,
L. E.; Kizaka-Kondoh, S.; Hiraoka, M.; Kihara, K. Acta Oncol. 2006, 45,
317–324. (c) Nickols, N. G.; Jacobs, C. S.; Farkas, M. E.; Dervan, P. B.
ACS Chem. Biol. 2007, 2, 561–571. (d) Nickols, N. G.; Dervan, P. B. Proc.
Natl. Acad. Sci. U.S.A. 2007, 104, 10418–10423. (e) Matsuda, H.; Fukuda,
N.; Ueno, T.; Tahira, Y.; Ayame, H.; Zhang, W.; Bando, T.; Sugiyama,
H.; Saito, S.; Matsumoto, K.; others, O. J. Am. Soc. Neph. 2006, 17, 422–
432. (f) Yao, E. H.; Fukuda, N.; Ueno, T.; Matsuda, H.; Matsumoto, K.;
Nagase, H.; Matsumoto, Y.; Takasaka, A.; Serie, K.; Sugiyama, H.;
Sawamura, T. Hypertension 2008, 52, 86–92. (g) Takahashi, T.; Asami,
Y.; Kitamura, E.; Suzuki, T.; Wang, X.; Igarashi, J.; Morohashi, A.;
Shinojima, Y.; Kanou, H.; Saito, K.; Takasu, T.; Nagase, H.; Harada, Y.;
Kuroda, K.; Watanabe, T.; Kumamoto, S.; Aoyama, T.; Matsumoto, Y.;
Bando, T.; Sugiyama, H.; Yoshida-Noro, C.; Fukuda, N.; Hayashi, N. Chem.
Biol. 2008, 15, 829–841. (h) Hochhauser, D.; Kotecha, M.; O’hare, C.;
Morris, P. J.; Hartley, J. M.; Taherbhai, Z.; Harris, D.; Forni, C.; Mantovani,
R.; Lee, M.; Hartley, J. A. Mol. Cancer Ther. 2007, 6, 346–354.
(7) (a) Rucker, V. C.; Foister, S.; Melander, C.; Dervan, P. B. J. Am.
Chem. Soc. 2003, 125, 1195–1202. (b) Chenoweth, D. M.; Viger, A.;
Dervan, P. B. J. Am. Chem. Soc. 2007, 129, 2216–2217. (c) Fujimoto, J.;
Bando, T.; Minoshima, M.; Kashiwazaki, G.; Nishijima, S.; Shinohara, K.;
Sugiyama, H. Bioorg. Med. Chem. 2008, 16, 9741–9744.
Figure 1. Structures of macrocyclic polyamides 1z-3z and 1-3
and their ball-and-stick models. Polyamide shorthand code: closed
circles, Im monomer; open circles, Py monomer.
(8) (a) Arndt, H. D.; Hauschild, K. E.; Sullivan, D. P.; Lake, K.; Dervan,
P. B.; Ansari, A. Z. J. Am. Chem. Soc. 2003, 125, 13322–13323. (b) Kwonj,
Y.; Arndt, H. D.; Qian, M.; Choi, Y.; Kawazoe, Y.; Dervan, P. B.; Uesugi,
M. J. Am. Chem. Soc. 2004, 126, 15940–15941. (c) Hauschild, K. E.;
Metzler, R. E.; Arndt, H. D.; Moretti, R.; Raffaelle, M.; Dervan, P. B.;
Ansari, A. Z. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 5008–5013. (d)
Stafford, R. L.; Arndt, H. D.; Brezinski, M. L.; Ansari, A. Z.; Dervan, P. B.
J. Am. Chem. Soc. 2007, 129, 2660–2668. (e) Stafford, R. L.; Dervan, P. B.
J. Am. Chem. Soc. 2007, 129, 14026–14033.
manner (Scheme 1). As serendipitous minor products, higher-
order oligomers such as the 12-membered (2) and 16-
membered (3) cyclic polyamides are also produced by this
method. In addition to describing the synthetic chemistry to
prepare 1-3, we examined the DNA binding properties of
such expanded polyamide macrocycles.
(9) (a) Cohen, J. D.; Sadowski, J. P.; Dervan, P. B. Angew. Chem., Int.
Ed. 2007, 46, 7956–7959. (b) Schmidt, T. L.; Nandi, C. K.; Rasched, G.;
Parui, P. P.; Brutschy, B.; Famulok, M.; Heckel, A. Angew. Chem., Int.
Ed. 2007, 46, 4382–4384. (c) Cohen, J. D.; Sadowski, J. P.; Dervan, P. B.
J. Am. Chem. Soc. 2008, 130, 402–403.
Our strategy for this oligomerization route relied on the
palindromic nature of polyamide 1. Disconnection of 1 at
both γ-amino turns affords two identical halves of the
molecule. Bimolecular coupling between two molecules,
followed by intramolecular ring closure, delivers cyclic
Py-Im polyamides. Bifunctional oligomer 4 contains every
atom needed to construct cyclic polyamides 1-3 by this
process (Scheme 1).
(10) (a) Chenoweth, D. M.; Harki, D. A.; Dervan, P. B. J. Am. Chem.
Soc. 2009, 131, 7175–7181. For additional solution-phase polyamide
synthesis studies see: (b) Mrksich, M.; Parks, M. E.; Dervan, P. B. J. Am.
Chem. Soc. 1994, 116, 7983–7988. (c) Xiao, J.; Yuan, G.; Huang, W.; Chan,
A. S.; Lee, K. L. J. Org. Chem. 2000, 65, 5506–5513. (d) Harris, D.; Stewart,
M.; Sielaff, A.; Mulder, K.; Brown, T.; Mackay, H.; Lee, M. Heterocycl.
Commun. 2007, 13, 17–23. (e) Xiao, J.-H.; Huang, W.-Q.; Tang, F.-L.;
Yuan, G.; Chan, A. S. C.; Lee, K-L. D Chin. J. Chem. 2000, 18, 603–607.
(f) Boger, D. L.; Fink, B. E.; Hedrick, M. P. J. Am. Chem. Soc. 2000, 122,
6382–6394. (g) Mamidyala, S. K.; Firestine, S. M. Tetrahedron Lett. 2006,
47, 7431–7434. (h) Sinyakov, A. N.; Feshchenko, M. V.; Ryabinin, V. A.
Russ. J. Bioorg. Chem. 2004, 30, 98–99. (i) Yuan, G.; Tang, F. ARKIVOC
2003, ii, 32–37. (j) Xiao, J. H.; Yuan, G.; Huang, W. Q.; Tang, F. L.; Chan,
A. S. C.; Lee, K. L. D. Chin. Chem. Lett. 2000, 11, 207–208. (k) For
additional solid-phase hairpin polyamide synthesis studies see: Baird, E. E.;
Dervan, P. B. J. Am. Chem. Soc. 1996, 118, 6141–6146. (l) Belitsky, J. M.;
Nguyen, D. H.; Wurtz, N. R.; Dervan, P. B. Bioorg. Med. Chem. 2002, 10,
2767–2774. (m) Wurtz, N. R.; Turner, J. M.; Baird, E. E.; Dervan, P. B.
Org. Lett. 2001, 3, 1201–1203. (n) Krutzik, P. O.; Chamberlin, A. R. Bioorg.
Med. Chem. Lett. 2002, 12, 2129–2132. (o) Krutzik, P. O.; Chamberlin,
A. R. Methods Mol. Biol. 2002, 201, 77–92. (p) Ayame, H.; Saito, T.; Bando,
T.; Fukuda, N.; Sugiyama, H. Nucleic Acids. Res. Suppl. 2003, 67–68. (q)
Moore, M. J. B.; Cuenca, F.; Searcey, M.; Neidle, S. Org. Biomol. Chem.
2006, 4, 3479–3488.
The pentafluorophenyl ester 4 was prepared in one step
from the previously reported carboxylic acid of 4.11a Acidic
deprotection of the γ-amino functionality of 4 followed by
drying in vacuo yields intermediate 5 which is the substrate
for the homodimerization/oligomerization reaction. To initiate
this sequence, the protected trifluoroacetate salt 5 was diluted
with DMSO, then treated with an organic base (DIEA) to
unmask the nucleophilic primary γ-amine. The ensuing
oligomerization/macrocyclization process provides benzyl-
carbamate protected cyclic polyamides 1z, 2z, and 3z and
trace amounts of unisolated higher-order oligomers. A
distribution of uncyclized intermediates corresponding to the
dimer (8-ring cycle, 1z), trimer (12-ring cycle, 2z), tetramer
(16-ring cycle, 3z), and higher-order adducts can be observed
at early time points, as evidenced by HPLC analysis at 2 h
(Figure S1, Supporting Information). Extended reaction times
(20 h) reveals cyclized polyamides 1z, 2z, and 3z in a ratio
of 6.6:2.6:1 almost exclusively (Figure 2). Isolation of 1z
(11) (a) Chenoweth, D. M.; Harki, D. A.; Phillips, J. W.; Dose, C.;
Dervan, P. B. J. Am. Chem. Soc. 2009, 131, 7182–7188. For additional
solid-phase cyclic polyamide synthesis studies, see: (b) Cho, J.; Parks, M. E.;
Dervan, P. B. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 10389–10392. (c)
Zhang, Q.; Dwyer, T. J.; Tsui, V.; Case, D. A.; Cho, J.; Dervan, P. B.;
Wemmer, D. E. J. Am. Chem. Soc. 2004, 126, 7958–7966. (d) Herman,
D. M.; Turner, J. M.; Baird, E. E.; Dervan, P. B. J. Am. Chem. Soc. 1999,
121, 1121–1129. (e) Melander, C.; Herman, D. M.; Dervan, P. B.
Chem.sEur. J. 2000, 6, 4487–4497.
Org. Lett., Vol. 11, No. 16, 2009
3591