room temperature on a Nonius Kappa CCD diffractometer31
while for 6 and 7 they were collected on a Bruker CCD
diffractometer—both diffractometers were equipped with
graphite monochromated Mo-Ka radiation. Unit cell
parameters were obtained and refined using the whole data
set. Frames were integrated and corrected for Lorentz and
polarization effects using DENZO.32 The scaling and the
global refinement of the crystal parameters were performed
by SCALEPACK.32 For 5 and 6, the absorption correction
using SADABS was applied.33 The structure solution and
refinement proceeded similarly for all structures using the
SHELX-97 program package.34 Direct methods yielded all
non-hydrogen atoms of the asymmetric unit. These atoms
were treated anisotropically (full-matrix least squares method
on F2). In 4 the oxygen atoms of the [ClO4]ꢃ anion are
disordered over two positions with occupancies of 0.86(1)
and 0.14(1), respectively, and only the major component was
treated anisotropically. In 7 the oxygen atom of the water
molecule was refined with the partial occupancy of 0.17(2) in
an isotropic approximation. Hydrogen atoms in the water
molecule were not localized. In 8 three oxygen atoms O4, O5,
and O6 of the [ClO4]ꢃ anion are disordered over two positions
with occupancies of 0.75(1) and 0.25(1), respectively; the
major component was treated anisotropically and the minor
position was treated in an isotropic approximation. In all
structures, C-bound H atoms were placed in the calculated
positions and were treated using a riding-model approximation,
with Uiso(H) = 1.2 Ueq(C) for methylene and Uiso(H) = 1.5
Ueq(C) for methyl groups, respectively, while the N- and
O-bound H-atoms were found from differential Fourier maps
at an intermediate stage of the refinement and were treated
isotropically. All images were produced using Mercury.35
4 V. J. Gatto and G. W. Gokel, J. Am. Chem. Soc., 1984, 106, 8240.
5 K. A. Arnold, A. M. Viscariello, M. Kim, R. D. Gandour,
F. R. Fronczek and G. W. Gokel, Tetrahedron Lett., 1988, 29,
3025.
6 (a) G. W. Gokel, W. M. Leevy and M. E. Weber, Chem. Rev.,
2004, 104, 2723; (b) G. W. Gokel, Chem. Soc. Rev., 1992, 21, 39.
7 K. R. Fewings and P. C. Junk, Aust. J. Chem., 1999, 52, 1109.
8 D. J. Evans, P. C. Junk and M. K. Smith, New J. Chem., 2002, 26,
1043.
9 M. I. Saleh, A. Salhin, B. Saad and H.-K. Fun, J. Mol. Struct.,
1999, 475, 93.
10 T. W. Hambley, L. F. Lindoy, J. R. Reimers, P. Turner, G. Wei
and A. N. Widmer-Cooper, J. Chem. Soc., Dalton Trans., 2001,
614.
11 S. S. Basok, L. Croitoru, M. S. Fonari, E. V. Ganin,
V. O. Gelmboldt, J. Lipkowski and Yu. A. Simonov, Acta Crystal-
logr., Sect. C: Cryst. Struct. Commun., 2005, 61, o188.
12 A. S. Gaballa, S. M. Teleb, E. Rusanov and D. Steinborn, Inorg.
Chim. Acta, 2005, 357, 4144.
13 P. C. Junk and M. K. Smith, Inorg. Chem. Commun., 2002, 5, 1082.
14 (a) E. K. Elliott, J. Hu and G. W. Gokel, Supramol. Chem., 2007,
19, 175; (b) A. V. Bordunov, J. S. Bradshaw, X. X. Zhang,
N. K. Dalley, X. Kou and R. M. Izatt, Inorg. Chem., 1996, 35,
7229; (c) A. Awasthy, M. Bhatnagar, J. Tomar and U. Sharma,
Bioinorg. Chem. Appl., 2006, 2006, 1.
15 (a) J. Hu, L. J. Barbour, R. Ferdani and G. W. Gokel, Chem.
Commun., 2002, 1806; (b) J. Hu, L. J. Barbour and G. W. Gokel,
Chem. Commun., 2002, 1808; (c) J. Hu, L. J. Barbour, R. Ferdani
and G. W. Gokel, Chem. Commun., 2002, 1810.
16 L. G. A. van de Water, W. Buijs, W. L. Driessen and J. Reedijk,
New J. Chem., 2001, 25, 243.
17 M. Grotjahn and E. Kleinpeter, J. Mol. Model, 1999, 5, 296.
18 (a) C.-C. Su and L.-H. Lu, J. Mol. Struct., 2004, 702, 23;
(b) C.-C. Su, L.-H. Lu and T.-J. Hsieh, J. Mol. Struct., 2007,
831, 151.
19 (a) C. Platas-Iglesias, D. Esteban-Go
F. Avecilla, A. de Blas and T. Rodrı
2005, 44, 2224; (b) C. Platas-Iglesias, D. Esteban, V. Ojea,
F. Avecilla, A. de Blas and T. Rodrıguez-Blas, Inorg. Chem.,
2003, 42, 4299; (c) M. Gonzalez-Lorenzo, C. Platas-Iglesias,
F. Avecilla, S. Faulkner, S. J. A. Pope, A. de Blas and
T. Rodrıguez-Blas, Inorg. Chem., 2005, 44, 4254.
´
mez, T. Enrıquez-Perez,
´ ´
´
guez-Blas, Inorg. Chem.,
´
´
´
Computational details. Ab initio calculations were carried
out using density functional theory with the Gaussian03
package at the B3LYP/6-31+G and HF/6-31+G levels of
theory.36 To avoid SCF convergence problems, a quadratic
convergence procedure was applied during the geometry
optimizations. Full geometry optimizations of the studied
compounds were performed both in solution and in the gas
phase. The polarizable continuum model (PCM) was included
in the SCF procedure for the description of the methanol
solutions with the exception of 4. The dielectric constant was
set at 32.63. All calculations were carried out using the
restricted spin formalism (closed-shell).
20 N. G. Lukyanenko, S. S. Basok, E. Yu. Kulygina and
V. I. Vetrogon, Russ. J. Gen. Chem., 2003, 73, 1919.
21 (a) M. S. Fonari, Yu. A. Simonov, Yu. M. Chumakov, G. Bocelli,
E. V. Ganin and A. A. Yavolovskii, Supramol. Chem., 2004, 16, 23;
(b) N. G. Lukyanenko, T. I. Kirichenko, A. Yu. Lyapunov, C.
Yu. Kulygina, Yu. A. Simonov, M. S. Fonari and
M. M. Botoshansky, Tetrahedron Lett., 2004, 45, 2927;
(c) M. S. Fonari, Yu. A. Simonov, G. Bocelli,
M. M. Botoshansky and E. V. Ganin, J. Mol. Struct., 2005, 738,
85; (d) Yu. A. Simonov, M. S. Fonari, Gh. Duca, M. V. Gonta,
E. V. Ganin, A. A. Yavolovskii, M. Gdaniec and J. Lipkowski,
Tetrahedron, 2005, 61, 6596; (e) N. G. Lukyanenko,
T. I. Kirichenko, A. Yu. Lyapunov, A. V. Mazepa, Yu.
A. Simonov, M. S. Fonari and M. M. Botoshansky, Chem.–Eur.
J., 2005, 11, 262; (f) E. V. Ganin, M. S. Fonari, Yu. A. Simonov,
G. Bocelli, S. S. Basok, V. V. Tkachuk, S. A. Kotlyar and
G. L. Kamalov, J. Inclusion Phenom. Macrocyclic Chem., 2005,
52, 63; (g) W.-J. Wang, E. V. Ganin, M. S. Fonari, Yu. A. Simonov
and G. Bocelli, Org. Biomol. Chem., 2005, 3, 3054;
(h) M. S. Fonari, E. V. Ganin, S.-W. Tang, W.-J. Wang and Yu.
A. Simonov, J. Mol. Struct., 2007, 826, 89; (i) B. Moulton,
B. S. Luisi, M. S. Fonari, S. S. Basok, E. V. Ganin and V.
Ch. Kravtsov, New J. Chem., 2007, 31, 561.
Acknowledgements
The diffraction data for 1, 4 and 8 were collected at the
Schulich Faculty of Chemistry, Technion, Haifa, through the
cooperation of Prof. Menahem Kaftory, whom we would like
to acknowledge. The authors thank Prof. A. S. Dimoglo for
the computational facility.
22 M. S. Fonari, Yu. A. Simonov, L. Croitoru, S. S. Basok,
E. V. Ganin and J. Lipkowski, J. Mol. Struct., 2006, 794, 110.
23 For lariat ethers host–guest molecular complexes see: (a) K. von
Deuten, A. Knochel, J. Kopf, J. Oehler and G. Rudolph, J. Chem.
Res., 1979, 358, 4035; (b) Y. Habata and S. Akabori, J. Chem. Soc.,
Dalton Trans., 1996, 3871; (c) R. E. Gawley, S. Pinet,
C. M. Cardona, P. K. Datta, T. Ren, W. C. Guida, J. Nydick
and R. M. Leblanc, J. Am. Chem. Soc., 2002, 124, 13448;
(d) Y. Habata, T. Saeki and S. Akabori, J. Heterocycl. Chem.,
2001, 38, 585; (e) K. A. Arnold, A. M. Viscariello, M. Kim,
References
1 C. J. Pedersen, J. Am. Chem. Soc., 1967, 89, 7017.
2 C. J. Pedersen, J. Am. Chem. Soc., 1967, 89, 2495.
3 M. E. Weber, E. K. Elliott and G. W. Gokel, Org. Biomol. Chem.,
2006, 4, 83.
ꢁc
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2009 New J. Chem., 2009, 33, 1646–1656 | 1655