Journal of Medicinal Chemistry
ARTICLE
’ AUTHOR INFORMATION
function of a human TAFII250 double bromodomain module. Science
2000, 288, 1422–1425. (e) Owen, D. J.; Ornaghi, P.; Yang, J. C.; Lowe,
N.; Evans, P. R.; Ballario, P.; Neuhaus, D.; Filetici, P.; Travers, A. A. The
structural basis for the recognition of acetylated histone H4 by the
bromodomain of histone acetyltransferase gcn5p. EMBO J. 2000, 19,
6141–6149.
Corresponding Author
*(S.J.C.) Tel: +44 (0)1865 285 109. Fax: +44 (0)1865 285 002.
E-mail: stuart.conway@chem.ox.ac.uk. (T.D.H.) Tel: +44 (0)1223
226270. E-mail: t.heightman@astex-therapeutics.com.
(4) (a) Strahl, B. D.; Allis, C. D. The language of covalent histone
modifications. Nature 2000, 403, 41–45. (b) Winston, F.; Allis, C. D.
The bromodomain: a chromatin-targeting module?. Nat. Struct. Biol.
1999, 6, 601–604. (c) Jenuwein, T.; Allis, C. D. Translating the histone
code. Science 2001, 293, 1074–1080. (d) Agalioti, T.; Chen, G.; Thanos,
D. Deciphering the transcriptional histone acetylation code for a human
gene. Cell 2002, 111, 381–392. (e) Loyola, A.; Almouzni, G. Bromodo-
mains in living cells participate in deciphering the histone code. Trends
Cell Biol. 2004, 14, 279–281.
(5) Florence, B.; Faller, D. V. You bet-cha: a novel family of transcrip-
tional regulators. Front. Biosci. 2001, 6, D1008–1018.
(6) Yang, Z.; He, N.; Zhou, Q. Brd4 recruits P-TEFb to chromo-
somes at late mitosis to promote G1 gene expression and cell cycle
progression. Mol. Cell. Biol. 2008, 28, 967–976.
(7) Crawford, N. P.; Alsarraj, J.; Lukes, L.; Walker, R. C.; Officewala,
J. S.; Yang, H. H.; Lee, M. P.; Ozato, K.; Hunter, K. W. Bromodomain 4
activation predicts breast cancer survival. Proc. Natl. Acad. Sci. U.S.A.
2008, 105, 6380–6385.
(8) (a) French, C. A.; Kutok, J. L.; Faquin, W. C.; Toretsky, J. A.;
Antonescu, C. R.; Griffin, C. A.; Nose, V.; Vargas, S. O.; Moschovi, M.;
Tzortzatou-Stathopoulou, F.; Miyoshi, I.; Perez-Atayde, A. R.; Aster,
J. C.; Fletcher, J. A. Midline carcinoma of children and young adults with
NUT rearrangement. J. Clin. Oncol. 2004, 22, 4135–4139. (b) Haruki,
N.; Kawaguchi, K. S.; Eichenberger, S.; Massion, P. P.; Gonzalez, A.;
Gazdar, A. F.; Minna, J. D.; Carbone, D. P.; Dang, T. P. Cloned fusion
product from a rare t(15;19)(q13.2;p13.1) inhibit S phase in vitro.
J. Med. Genet. 2005, 42, 558–564.
(9) Zhou, M.; Huang, K.; Jung, K. J.; Cho, W. K.; Klase, Z.; Kashanchi,
F.; Pise-Masison, C. A.; Brady, J. N. Bromodomain protein Brd4 regulates
human immunodeficiency virus transcription through phosphorylation of
CDK9 at threonine 29. J. Virol. 2009, 83, 1036–1044.
(10) Lin, A.; Wang, S.; Nguyen, T.; Shire, K.; Frappier, L. The EBNA1
protein of Epstein-Barr virus functionally interacts with Brd4. J. Virol.
2008, 82, 12009–12019.
(11) Gagnon, D.; Joubert, S.; Senechal, H.; Fradet-Turcotte, A.; Torre,
S.; Archambault, J. Proteasomal degradation of the papillomavirus E2
protein is inhibited by overexpression of bromodomain-containing protein
4. J. Virol. 2009, 83, 4127–4139.
(12) Huang, B.; Yang, X. D.; Zhou, M. M.; Ozato, K.; Chen, L. F. Brd4
coactivates transcriptional activation of NF-kappaB via specific binding to
acetylated RelA. Mol. Cell. Biol. 2009, 29, 1375–1387.
(13) Shang, E.; Nickerson, H. D.; Wen, D.; Wang, X.; Wolgemuth,
D. J. The first bromodomain of Brdt, a testis-specific member of the BET
sub-family of double-bromodomain-containing proteins, is essential for
male germ cell differentiation. Development 2007, 134, 3507–3515.
(14) Sachchidanand; Resnick-Silverman, L.; Yan, S.; Mutjaba, S.;
Liu, W. J.; Zeng, L.; Manfredi, J. J.; Zhou, M. M. Target structure-based
discovery of small molecules that block human p53 and CREB binding
protein association. Chem. Biol. 2006, 13, 81–90.
Present Addresses
Astex Therapeutics, 436 Cambridge Science Park, Cambridge,
CB4 0QA, U.K.
’ ACKNOWLEDGMENT
We thank Cancer Research U.K. for a studentship (to D.S.H.). S.J.
C. thanks St. Hugh’s College, Oxford, for research support. The
Structural Genomics Consortium is a registered charity (number
1097737) that receives funds from the Canadian Institutes for
Health Research, the Canadian Foundation for Innovation, Genome
Canada through the Ontario Genomics Institute, GlaxoSmithKline,
Karolinska Institutet, the Knut and Alice Wallenberg Foundation,
the Ontario Innovation Trust, the Ontario Ministry for Research and
Innovation, Merck & Co., Inc., the Novartis Research Foundation,
the Swedish Foundation for Strategic Research, and the Wellcome
Trust. We are grateful to Timothy Rooney for the preparation of
6-bromo-3-methyl-3,4-dihydroquinazolin-2(1H)-one and to Dr.
Rod Chalk and Dr. James Wickens for MS studies. We thank Dr.
Paul Brennan for useful discussions.
’ ABBREVIATION USED
BET, bromodomain and extra terminal domain; BRD, bromo-
domain-containing protein; BRD2(1)/(2), first/second bromo-
domain of BRD2; BRD4(1)/(2), first/second bromodomain
of BRD4; BRDT, bromodomain, testis-specific; CREB, cAMP
response element-binding protein; CREBBP, CREB binding
protein; DMAc, N,N-dimethylacetamide; EBV, EpsteinꢀBarr virus;
GCN5, general control of amino acid synthesis, yeast, homo-
logue-like 2; HAT, histone acetyltransferase; HBTU, O-(benzo-
triazol-1-yl)-N,N,N0,N0-tetramethyluronium hexafluorophosphate;
HDAC, histone deacetylase; KAc, acetyl-lysine; MTT, 3-(4,5-di-
methylthiazol-2-yl)-2,5-diphenylltetrazolium bromide; NUT, nuclear
protein in testis; P-TEFb, positive transcription elongation
factor b; PB1(5), fifth bromodomain of PB1 (BAF180), a unique
subunit of the polybromo (PBAF) complex; PCAF, P300/
CREBBP-associated factor; RuPhos, 2-dicyclohexylphosphino-
20,60-diisopropoxybiphenyl; TAFII250, TATA box binding pro-
tein-associated factor, 250 kDa
’ REFERENCES
(1) Turner, B. M. Histone acetylation and an epigenetic code. BioEssays
2000, 22, 836–845.
(15) Borah, J. C.; Mujtaba, S.; Karakikes, I.; Zeng, L.; Muller, M.; Patel, J.;
Moshkina, N.; Morohashi, K.; Zhang, W.; Gerona-Navarro, G.; Hajjar, R. J.;
Zhou, M. M. A small molecule binding to the coactivator CREB-binding
protein blocks apoptosis in cardiomyocytes. Chem. Biol. 2011, 4, 531–541.
(16) Ito, T.; Umehara, T.; Sasaki, K.; Nakamura, Y.; Nishino, N.;
Terada, T.; Shirouzu, M.; Padmanabhan, B.; Yokoyama, S.; Ito, A.;
Yoshida, M. Real-time imaging of histone H4K12-specific acetylation
determines the modes of action of histone deacetylase and bromodo-
main inhibitors. Chem. Biol. 2011, 18, 495–507.
(17) Miyoshi, S.; Ooike, S.; Iwata, K.; Hikawa, H.; Sugahara, K.
Antitumor Agent. Int. Pat. Appl. WO 2009/084693, 2009.
(18) Filippakopoulos, P.; Qi, J.; Picaud, S.; Shen, Y.; Smith, W. B.;
Fedorov, O.; Morse, E. M.; Keates, T.; Hickman, T. T.; Felletar, I.;
(2) Choudhary, C.; Kumar, C.; Gnad, F.; Nielsen, M. L.; Rehman, M.;
Walther, T. C.; Olsen, J. V.; Mann, M. Lysine acetylation targets protein
complexes and co-regulates major cellular functions. Science 2009, 325,
834–840.
(3) (a) Dhalluin, C.; Carlson, J. E.; Zeng, L.; He, C.; Aggarwal, A. K.;
Zhou, M. M. Structure and ligand of a histone acetyltransferase
bromodomain. Nature 1999, 399, 491–496. (b) Ornaghi, P.; Ballario,
P.; Lena, A. M.; Gonzalez, A.; Filetici, P. The bromodomain of Gcn5p
interacts in vitro with specific residues in the N terminus of histone H4.
J. Mol. Biol. 1999, 287, 1–7. (c) Hudson, B. P.; Martinez-Yamout, M. A.;
Dyson, H. J.; Wright, P. E. Solution structure and acetyl-lysine binding
activity of the GCN5 bromodomain. J. Mol. Biol. 2000, 304, 355–370.
(d) Jacobson, R. H.; Ladurner, A. G.; King, D. S.; Tjian, R. Structure and
6769
dx.doi.org/10.1021/jm200640v |J. Med. Chem. 2011, 54, 6761–6770