4604
S. Kotani et al. / Tetrahedron Letters 50 (2009) 4602–4605
Table 3
Enantioselective direct aldol-type reactions between various aldehydes
BINAPO (10 mol%)
SiCl4 (1.5 equiv)
O
OH OH
NaBH4
R1
R3CHO
+
H
R3
iPr2NEt (5 equiv)
EtCN, rt
MeOH
R1 R2
5
R2
rt, 30 min
4
2
Entry
Aldol donor (R1, R2)
Aldol acceptor (R3)
Time (h)
5
Yielda (%)
% eeb (anti)
1
2
3
4
5
6
7
8
Me, Me (4a)
–(CH2)3– (4b)
Me, Me (4a)
Me, Me (4a)
Me, Me (4a)
Me, Me (4a)
Me, Me (4a)
Me, nPr (4c)
Ph (2a)
Ph (2a)
0.5
0.5
0.5
0.5
2
2
24
4
5aa
5ba
5ab
5ac
5ad
5ae
5ah
5ca
87
80
99
86
71
94
16
80c
55
49
58
58
51
53
4-MeOC6H4 (2b)
4-BrC6H4 (2c)
1-Naphthyl (2d)
2-Naphthyl (2e)
PhCH2CH2 (2h)
Ph (2a)
63
49d, 45e
a
Isolated yields.
Determined by HPLC analysis.
dr = 2:1.
The ee of the major diastereomer.
The ee of the minor diastereomer.
b
c
d
e
M. Chem. Eur. J. 1998, 4, 1137–1141; (c) Mahrwald, R. Chem. Rev. 1999, 99,
1095–1120; (d) Machajewski, T. D.; Wong, C.-H. Angew. Chem., Int. Ed. 2000, 39,
1352–1374; (e) Palomo, C.; Oiarbide, M.; García, J. M. Chem. Soc. Rev. 2004, 33,
65–75.
As mentioned above, aliphatic aldehydes showed little reactiv-
ity as electrophiles. Therefore, we next envisioned that aliphatic
aldehydes might act as good aldol donors via enolization by tetra-
chlorosilane with an amine base.15 Direct aldol-type reactions be-
tween two different aldehydes are classical C–C bond-forming
reactions in organic synthesis. However, few examples of enantio-
selective direct aldol reactions have been reported between alde-
hydes due to crucial side reactions, including self-aldol reactions,
dehydration, and multiple aldol reactions.16
Thus, we investigated the reaction between benzaldehyde and
isobutyraldehyde in the presence of BINAPO as an organocatalyst.17
The reaction was conducted similar to the case using ketones and
the aldol products were transformed to the corresponding diols by
NaBH4 reduction to facilitate isolation. Table 3 shows the results
for the reactions between various aldehydes. Although stereoselec-
tivities were modest, the reactions proceeded smoothly to afford the
corresponding adduct without any self-condensation in every case.
Finally, the diastereo- and enantioselective reaction of 2-methyl-
pentanal with benzaldehyde afforded the desired aldol adduct,
2. For reviews on direct aldol reaction, see: (a) Alcaide, B.; Almendros, P. Eur. J.
Org. Chem. 2002, 1595–1601; (b) Saito, S.; Yamamoto, H. Acc. Chem. Res. 2004,
37, 570–579; (c) Guillena, G.; Nájera, C.; Ramón, D. J. Tetrahedron: Asymmetry
2007, 18, 2249–2293.
3. (a) Yamada, Y. M. A.; Yoshikawa, N.; Sasai, H.; Shibasaki, M. Angew. Chem., Int.
Ed. 1997, 36, 1871–1873; (b) Shibasaki, M.; Yoshikawa, N. Chem. Rev. 2002, 102,
2187–2210; (c) Shibasaki, M.; Matsunaga, S. Chem. Soc. Rev. 2006, 35, 269–279.
4. For related catalyses, see: (a) Trost, B. M.; Ito, H. J. Am. Chem. Soc. 2000, 122,
12003–12004; (b) Suzuki, T.; Yamagiwa, N.; Matsuo, Y.; Sakamoto, S.;
Yamaguchi, K.; Shibasaki, M.; Noyori, R. Tetrahedron Lett. 2001, 42, 4669–
4671.
5. (a) List, B.; Lerner, R. A.; Barbas, C. F. J. Am. Chem. Soc. 2000, 122, 2395–2396; (b)
Notz, W.; Tanaka, F.; Barbas, C. F. Acc. Chem. Res. 2004, 37, 580–591; (c)
Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471–
5569.
6. For related catalyses, see: (a) Torii, H.; Nakadai, M.; Ishihara, K.; Saito, S.;
Yamamoto, H. Angew. Chem., Int. Ed. 2004, 43, 1983–1986; (b) Cobb, A. J. A.;
Longbottom, D. A.; Shaw, D. M.; Ley, S. V. Chem. Commun. 2004, 1808–1809; (c)
Kano, T.; Takai, J.; Tokuda, O.; Maruoka, K. Angew. Chem., Int. Ed. 2005, 44,
3055–3057.
7. Although the substrates are limited to glycine Schiff bases, the aldol reactions
promoted by phase transfer catalysts have been reported, see: Ooi, T.;
Taniguchi, M.; Kameda, M.; Maruoka, K. Angew. Chem., Int. Ed. 2002, 41,
4542–4544.
which possessed an a-quaternary stereogenic center with moderate
stereoselectivity (entry 8).18
In summary, we have demonstrated a new concept for the asym-
metric direct aldol-type reactions between ketones and aldehydes
or between two aldehydes by using a chiral phosphine oxide, BINAP-
O as an organocatalyst. Further investigations, including improving
the enantioselectivity, extending the scope of the reaction, and
applying to natural product synthesis, are currently underway.
8. For chiral phosphine oxide-catalyzed reactions, see: (a) Nakajima, M.; Kotani,
S.; Ishizuka, T.; Hashimoto, S. Tetrahedron Lett. 2005, 46, 157–159; (b) Tokuoka,
E.; Kotani, S.; Matsunaga, H.; Ishizuka, T.; Hashimoto, S.; Nakajima, M.
Tetrahedron: Asymmetry 2005, 16, 2391–2392; (c) Nakanishi, K.; Kotani, S.;
Sugiura, M.; Nakajima, M. Tetrahedron 2008, 64, 6415–6419; (d) Simonini, V.;
Benaglia, M.; Benincori, T. Adv. Syn. Catal. 2008, 350, 561–564.
9. For recent reviews on related organocatalyses, see: (a) Dalko, P. I.; Moisan, L.
Angew. Chem., Int. Ed 2004, 43, 5138–5175; (b) Pellissier, H. Tetrahedron 2007,
ˇ
´
63, 9267–9331; (c) Malkov, A. V.; Kocovsky, P. Eur. J. Org. Chem. 2007, 29–36;
(d) Denmark, S. E.; Beutner, G. L. Angew. Chem., Int. Ed. 2008, 47, 1560–1638; (e)
MacMillan, D. W. C. Nature 2008, 455, 304–308.
Acknowledgments
10. (a) Denmark, S. E.; Winter, S. B. D.; Su, X.; Wong, K.-T. J. Am. Chem. Soc. 1996,
118, 7404–7405; (b) Denmark, S. E.; Stavenger, R. A. Acc. Chem. Res. 2000, 33,
432–440.
11. (a) Nakajima, M.; Yokota, T.; Saito, M.; Hashimoto, S. Tetrahedron Lett. 2004, 45,
61–64; (b) Kotani, S.; Hashimoto, S.; Nakajima, M. Synlett 2006, 1116–1118; (c)
Kotani, S.; Hashimoto, S.; Nakajima, M. Tetrahedron 2007, 63, 3122–3132; (d)
Sugiura, M.; Sato, N.; Kotani, S.; Nakajima, M. Chem. Commun. 2008, 4309–
4311.
This work was partly supported by a Grant-in-Aid for Scientific
Research on Priority Areas ‘Advanced Molecular Transformations
of Carbon Resources’ from the Ministry of Education, Culture,
Sports, Science, and Technology, Japan. We thank Takasago Inter-
national Corporation for its generous gift of chiral phosphines.
12. Although adding tetrachlorosilane to the mixture of the other components
gave the same results, adding
stereoselectivities.
a ketone to the mixture decreased the
Supplementary data
13. For a discussion on the chlorohydrin formation, see: Denmark, S. E.; Beutner, G.
L.; Wynn, T.; Eastgate, M. D. J. Am. Chem. Soc. 2005, 127, 3774–3789.
14. The signal of the olefin proton was observed at 5.28 ppm derived from
cyclohexanone. See Supplementary data.
Supplementary data associated with this article can be found, in
15. Denmark reported that HMPA catalyzed the formation of the trichlorosilyl enol
ether of isobutyraldehyde with tetrachlorosilane and 2,4,6-trimethylpyridine,
see: Denmark, S. E.; Bui, T. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5439–5444.
16. For recent reports on asymmetric cross-aldol reactions of aldehyde enolate
equivalents, see: (a) Denmark, S. E.; Ghosh, S. K. Angew. Chem., Int. Ed. 2001, 40,
References and notes
1. For recent reviews on enantioselective aldol reaction, see: (a) Nelson, S. G.
Tetrahedron: Asymmetry 1998, 9, 357–389; (b) Gröger, H.; Vogl, E. M.; Shibasaki,