C O M M U N I C A T I O N S
Table 2. Cationic Rh(I)-dppf Complex-Catalyzed Isomerizations of
Allyl Propargyl Ethers 1 to Homoallenic Alcohols 4
dienals. Future work will focus on using the cationic Rh(I) complex for
sequential activation of σ and π bonds in cascade reactions.
Acknowledgment. This work was supported partly by Grants-in-
Aid for Scientific Research (20675002, 19028015, and 21 ·906) from
MEXT, Japan. We thank Takasago International Corporation for the gift
of H8-BINAP and Segphos and Umicore for generous support in supplying
a rhodium complex.
1
2
3
4
R
entry
1
R
R , R
time (h)
4
yield (%)a
1
2
3
4
1a
1b
1c
1d
1e
1f
1g
1h
1i
Ph
Me, Me
Me, Me
Me, Me
Me, Me
Me, Me
(CH2)5
i-Pr, Me
Me, Me
Me, H
Me
Me
Me
Me
Me
Me
Me
Ph
23
19
44
17
30
23
15
72
17
72
4a
4b
4c
4d
4e
4f
4g
4h
4i
74
72
71
69
49
70
81
45
72
65
4-MeOC6H4
4-ClC6H4
n-Bu
Cy
b
5
6
7
8
Ph
Ph
Ph
Ph
b
Supporting Information Available: Experimental procedures and
compound characterization data. This material is available free of charge via
9
10
Me
Me
c
1j
Ph
H, H
2j
a Isolated yield. b At 40 °C. c Isolated as allenic aldehyde 2j without treatment
with NaBH4.
References
(1) For recent reviews of cascade reactions, see: (a) Chapman, C. J.; Frost, C. G.
Synthesis 2007, 1. (b) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew.
Chem., Int. Ed. 2006, 45, 7134. (c) Wasilke, J.-C.; Obrey, S. J.; Baker,
R. T.; Bazan, G. C. Chem. ReV. 2005, 105, 1001.
Table 3. Cationic Rh(I)-dppf Complex-Catalyzed Isomerizations of
Allyl Propargyl Ethers 1 to Dienals 3
(2) For a recent review of transition-metal-catalyzed C-H bond activation, see:
Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013.
(3) For a recent review of π-electrophilic Lewis acid catalysts, see: Yamamoto, Y. J.
Org. Chem. 2007, 72, 7817.
(4) For a recent review of transition-metal-catalyzed olefin isomerization, see: Tanaka,
K. In ComprehensiVe Organometallic Chemistry III; Crabtree, R. H., Mingos,
D. M. P., Ojima, I., Eds.; Elsevier: Oxford, U.K., 2007; Vol. 10, p 71.
(5) A mechanism via π-allyl intermediates has been proposed for cationic Rh(I)-
bisphosphine complex-catalyzed isomerizations of allylic compounds. Allyl
ethers: (a) Fatig, T.; Soulie´, J.; Lallemand, J.-Y.; Mercier, F.; Mathey, F.
Tetrahedron 2000, 56, 101. (b) Hiroya, K.; Kurihara, Y.; Ogasawara, K. Angew.
Chem., Int. Ed. Engl. 1995, 34, 2287. Allyl amines: (c) Nova, A.; Ujaque, G.;
Albe´niz, A. C.; Espinet, P. Chem.sEur. J. 2008, 14, 3323. (d) Inoue, S.-I.;
Takaya, H.; Tani, K.; Otsuka, S.; Sato, T.; Noyori, R. J. Am. Chem. Soc. 1990,
112, 4897. Allylic and propargylic alcohols: (e) Tanaka, K.; Shoji, T.; Hirano,
M. Eur. J. Org. Chem. 2007, 2687. (f) Tanaka, K.; Fu, G. C. J. Org. Chem.
2001, 66, 8177. (g) Bergens, S.; Bosnich, B. J. Am. Chem. Soc. 1991, 113,
958.
(6) For selected recent examples, see: (a) Coulter, M. M.; Dornan, P. K.; Dong, V. M.
J. Am. Chem. Soc. 2009, 131, 6932. (b) Osborne, J. D.; Randell-Sly, H. E.;
Currie, G. S.; Cowley, A. R.; Willis, M. C. J. Am. Chem. Soc. 2008, 130,
17232. (c) Tanaka, K.; Shibata, Y.; Suda, T.; Hagiwara, Y.; Hirano, M.
Org. Lett. 2007, 9, 1215. (d) Kundu, K.; McCullagh, J. V.; Morehead, A. T.,
Jr. J. Am. Chem. Soc. 2005, 127, 16042. (e) Sato, Y.; Oonishi, Y.; Mori,
M. Angew. Chem., Int. Ed. 2002, 41, 1218. (f) Tanaka, K.; Fu, G. C. J. Am.
Chem. Soc. 2001, 123, 11492, and references therein.
% yield (E/Z)a
1
2
3
4
R
entry
1
R
R , R
time (h)
3
1
2
3
4
5
6
7
8
9
1a
1b
1c
1d
1e
1f
1g
1h
1i
Ph
Me, Me
Me, Me
Me, Me
Me, Me
Me, Me
(CH2)5
i-Pr, Me
Me, Me
Me, H
Me
Me
Me
Me
Me
Me
Me
Ph
16
16
16
16
72
16
16
40
15
16
3a
3b
3c
3d
3e
3f
3g
3h
3i
82
76
76
72
4-MeOC6H4
4-ClC6H4
n-Bu
Cy
b
43
Ph
Ph
Ph
Ph
77
67 (4:1)
80 (2:1)
c
Me
Me
0
0
d
10
1j
Ph
H, H
3j
a Isolated yield. b The corresponding allenic aldehyde 2e remained in ∼32% yield.
c Allenic aldehyde 2i was generated in 61% yield. d Allenic aldehyde 2j was generated in
35% yield along with the decarbonylated byproduct.
Scheme 2
(7) (a) Saito, A.; Kanno, A.; Hanzawa, Y. Angew. Chem., Int. Ed. 2007, 46, 3931.
(b) Saito, A.; Oda, S.; Fukaya, H.; Hanzawa, Y. J. Org. Chem. 2009, 74, 1517.
(8) For selected recent examples of sequential olefin isomerization/Claisen rearrange-
ment of di(allyl) ethers, see: (a) Kerrigan, N. J.; Bungard, C. J.; Nelson, S. G.
Tetrahedron 2008, 64, 6863. (b) Trost, B. M.; Zhang, T. Org. Lett. 2006,
8, 6007. (c) Nelson, S. G.; Wang, K. J. Am. Chem. Soc. 2006, 128, 4232.
(d) Nevado, C.; Echavarren, A. M. Tetrahedron 2004, 60, 9735. (e) Schmidt,
B. Synlett 2004, 1541. (f) Nelson, S. G.; Bungard, C. J.; Wang, K. J. Am.
Chem. Soc. 2003, 125, 13000. (g) Le Notre, J.; Brissieux, L.; Semeril, D.;
Bruneau, C.; Dixneuf, P. H. Chem. Commun. 2002, 1772. (h) Ben Ammar,
H.; Le Notre, J.; Salem, M.; Kaddachi, M. T.; Dixneuf, P. H. J. Organomet.
Chem. 2002, 662, 63, and references therein.
(9) Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 15978.
(10) For a Ag(I)-catalyzed propargyl Claisen rearrangement, see: Grissom, J. W.;
Klingberg, D.; Huang, D.; Slattery, B. J. J. Org. Chem. 1997, 62, 603.
(11) A thermal Claisen rearrangement of di(allyl) ethers followed by a Rh(I)-catalyzed
intramolecular hydroacylation has been reported. See: Eilbracht, P.; Gersmeir, A.;
Lennartz, D.; Huber, T. Synthesis 1995, 330.
(12) No reaction was observed upon treatment of 1a with 5 mol % PdCl2 (CH2Cl2, rt,
16 h), which is known to be a very effective catalyst for isomerizations of allyl
ethers to enol ethers through electrophilic double bond activation. Therefore,
electrophilic double bond activation by the cationic Rh(I) complex might not be
involved in this olefin isomerization, although the precise mechanism cannot be
determined at the present stage. For a PdCl2-catalyzed isomerization of allyl ethers,
see: Mereyala, H. B.; Lingannagaru, S. R. Tetrahedron 1997, 53, 17501.
(13) No reaction was observed upon treatment of isolated enol ether 5d in refluxing
CH2Cl2 for 14 h. Furthermore, the reaction of 1h with 5 mol % Rh(I)-(S)-
H8-BINAP in refluxing CH2Cl2 furnished 4h with 15% ee. These results clearly
indicate that the cationic Rh(I) complex indeed catalyzes the propargyl Claisen
rearrangement.
presumably because of reversible hydrorhodation/ꢀ-hydride elimination
through rhodacycle C.
Consistent with this pathway, enol ether 5d and allenic aldehyde
2d were initially observed by 1H NMR spectroscopy at room
temperature (eq 1) and 80 °C (eq 2), respectively.15
(14) (a) Tanaka, K.; Fu, G. C. Chem. Commun. 2002, 684. (b) Yu, R. T.; Rovis,
T. J. Am. Chem. Soc. 2006, 128, 2782. (c) Yu, R. T.; Lee, E. E.; Malik,
G.; Rovis, T. Angew. Chem., Int. Ed. 2009, 48, 2379, and references therein.
(15) Isolated crude 2a (ca. >90% purity) was indeed transformed into 3a in 72% isolated
yield under the same conditions as entry 1, Table 3 [5 mol % Rh(I)–dppf, 80 °C,
16 h].
In conclusion, we have developed the cationic Rh(I)-dppf complex-
catalyzed isomerizations of allyl propargyl ethers to allenic aldehydes and
JA9038449
9
J. AM. CHEM. SOC. VOL. 131, NO. 31, 2009 10823