Organometallics 2009, 28, 4681–4688 4681
DOI: 10.1021/om900075h
Atom Transfer Radical Addition Reactions of CCl4, CHCl3, and p-Tosyl
Chloride Catalyzed by Cp0Ru(PPh3)(PR3)Cl Complexes
Radhika P. Nair, Tae Ho Kim, and Brian J. Frost*
Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216
Received January 30, 2009
A series of Cp0Ru(PR3)(PPh3)Cl complexes, where Cp0 = Cp*, Dp, Ind, Cp, Tp and PR3 = PTA,
PMe3, PPh3, have been used to catalyze the atom transfer radical addition (ATRA) of various chloro
substrates (CCl4, CHCl3, and TsCl) to styrene and/or hexene. The complexes Cp*Ru(PTA)(PPh3)Cl,
Cp*Ru(PMe3)(PPh3)Cl, DpRu(PMe3)(PPh3)Cl, and TpRu(PMe3)(PPh3)Cl have been synthesized
by ligand exchange reactions with Cp0Ru(PPh3)2Cl and characterized by NMR spectroscopy and
X-ray crystallography. An alternative synthesis for CpRu(PMe3)(PPh3)Cl and the solid-state
structure of the previously reported complex IndRu(PMe3)(PPh3)Cl are also described. Among
the ruthenium(II) complexes studied, Cp*Ru(PTA)(PPh3)Cl and Cp*Ru(PMe3)(PPh3)Cl were very
active at 60 °C with TOF values of 1060 and 933 h-1, respectively; Cp*Ru(PPh3)2Cl was the most
active for the addition of CCl4 to styrene with a TOF >960 h-1 at room temperature. Total turnovers
(TTO) in excess of 80 000 for the addition of CCl4 to hexene were obtained for the Cp* complexes,
making these complexes the most active and robust catalysts for ATRA reported to date.
Introduction
yields and stereoselectivity.2,6,8 A wide variety of metal com-
plexes catalyze ATRA, including those of copper,9-11 iron,10,12
nickel,6,13 and palladium.14 Ruthenium complexes, in particular,
have played a significant role, with RuCl2(PPh3)3 being a highly
efficient and versatile catalyst for ATRA.15-28 The diverse set of
The addition of halogenated compounds to olefins was first
reported in the late 1930s and is commonly referred to as
Kharasch addition or atom transfer radical addition
(ATRA).1 It is an effective method for C-C bond formation,
and its applications in synthetic organic chemistry have been well
reviewed.2-7 Transition-metal-catalyzed ATRA has gained
considerable interest since the early 1970s, as it provides higher
(13) For selected examples see: (a) van de Kuil, L. A.; Grove, D. M.;
Gossage, R. A.; Zwikker, J. W.; Jenneskens, L. W.; Drenth, W.; van
Koten, G. Organometallics 1997, 16, 4985–4994. (b) Kleij, A. W.; Gossage,
R. A.; Klein Gebbink, R. J. M.; Brinkmann, N.; Reijerse, E. J.; Kragl, U.; Lutz,
M.; Spek, A. L.; van Koten, G. J. Am. Chem. Soc. 2000, 122, 12112–12124.
(c) Pandarus, V.; Zargarian, D. Organometallics 2007, 26, 4321–4334.
(14) For selected examples see: (a) Tsuji, J.; Sato, K.; Nagashima, H.
Chem. Lett. 1981, 1169–1170. (b) Motoda, D.; Kinoshita, H.; Shinokubo,
H.; Oshima, K. Adv. Synth. Catal. 2002, 344, 261–265. (c) Dneprovskii, A.
S.; Ermoshkin, A. A.; Kasatochkin, A. N.; Boyarskii, V. P. Russ. J. Org.
Chem. 2003, 39, 933–946.
*To whom correspondence should be addressed. Tel:+1-775-784-
1993. Fax: +1-775-784-6804. E-mail: Frost@unr.edu.
(1) (a) Kharasch, M. S.; Engelmann, H.; Mayo, F. R. J. Org. Chem.
1938, 2, 288–302. (b) Kharasch, M. S.; Jensen, E. V.; Urry, W. H. Science
1945, 102, 128–128. (c) Kharasch, M. S.; Elwood, E. V.; Urry, W. H. J. Am.
Chem. Soc. 1947, 69, 1100–1105. (d) Kharasch, M. S.; Friedlander, H. N. J.
Org. Chem. 1949, 14, 239–247.
(15) Matsumoto, H.; Nakano, T.; Nagai, Y. Tetrahedron Lett. 1973,
14, 5147–5150.
(2) Minisci, F. Acc. Chem. Res. 1975, 8, 165–171.
(3) Bellus, D. Pure Appl. Chem. 1985, 57, 1827–1838.
(16) For examples see: Severin, K. Curr. Org. Chem. 2006, 10, 217–
224 and references therein.
ꢀ
(4) Iqbal, J.; Bhatia, B.; Nayyar, N. K. Chem. Rev. 1994, 94, 519–564.
(5) Clark, A. J. Chem. Soc. Rev. 2002, 31, 1–11.
(6) Gossage, R. A.; van de Kuil, L. A.; van Koten, G. Acc. Chem. Res.
1998, 31, 423–431.
(7) Pintauer, T.; Matyjaszewski, K. Chem. Soc. Rev. 2008, 37, 1087–
1097.
(17) Quebatte, L.; Thommes, K.; Severin, K. J. Am. Chem. Soc. 2006,
128, 7440–7441.
(18) (a) Quebatte, L.; Scopelliti, R.; Severin, K. Angew. Chem., Int.
Ed. 2004, 43, 1520–1524. (b) Quebatte, L.; Solari, E.; Scopelliti, R.; Severin,
K. Organometallics 2005, 24, 1404–1406.
(19) Quebatte, L.; Scopelliti, R.; Severin, K. Eur. J. Inorg. Chem.
(8) (a) Matsumoto, H.; Nikaido, T.; Nagai, Y. Tetrahedron Lett.
1975, 11, 899–902. (b) Davis, R.; Stephens, K.; Hajek, M. J. Mol. Catal.
1994, 92, 269–276.
2005, 3353–3358.
(20) Lundgren, R. J.; Rankin, M. A.; McDonald, R.; Stradiotto, M.
Organometallics 2008, 27, 254–258.
(21) (a) Tutusaus, O.; Delfosse, S.; Demonceau, A.; Noels, A. F.;
~
ꢁ
(9) Munoz-Molina, J. M.; Belderraın, T. R.; Perez, P. J. Adv. Synth.
~
Catal. 2008, 350, 2365–2372.
Vinas, C.; Teixidor, F. Tetrahedron Lett. 2003, 44, 8421–8425. (b)
~
~
(10) (a) de Campo, F.; Lastecoueres, D.; Verlhac, J.-B. Chem. Com-
mun. 1998, 2117–2118. (b) de Campo, F.; Lastecoueres, D.; Verlhac, J.-B. J.
Chem. Soc., Perkin Trans. 1 2000, 575–580.
Tutusaus, O.; Vinas, C.; Nꢁunez, R.; Teixidor, F.; Demonceau, A.; Delfosse,
S.; Noels, A. F.; Mata, I.; Molins, E. J. Am. Chem. Soc. 2003, 125, 11830–
11831.
(11) For selected examples see: (a) Pintauer, T.; Matyjaszewski, K.
Chem. Soc. Rev. 2008, 37, 1087–1097. (b) Eckenhoff, W. T.; Garrity, S. T.;
Pintauer, T. Eur. J. Inorg. Chem. 2008, 563–571. (c) Eckenhoff, W. T.;
(22) Richel, A.; Delfosse, S.; Cremasco, C.; Delaude, L.; Demonceau,
A.; Noels, A. F. Tetrahedron Lett. 2003, 44, 6011–6015.
(23) For selected examples see: (a) De Clercq, B.; Verpoort, F. Catal.
Lett. 2002, 83, 9–13. (b) De Clercq, B.; Verpoort, F. J. Organomet. Chem.
2003, 672, 11–16.
~
Pintauer, T. Inorg. Chem. 2007, 46, 5844–5846. (d) Munoz-Molina, J. M.;
ꢁ
Caballero, A.; Díaz-Requejo, M. M.; Trofimenko, S.; Belderraín, T. R.; Perez,
P. J. Inorg. Chem. 2007, 46, 7725–7730.
(24) Oe, Y.; Uozumi, Y. Adv. Synth. Catal. 2008, 350, 1771–1775.
(25) Thommes, K.; Ic-li, B.; Scopelliti, R.; Severin, K. Chem. Eur. J.
2007, 13, 6899–6907.
(26) Simal, F.; Wlodarczak, L.; Demonceau, A.; Noels, A. F. Tetra-
hedron. Lett. 2000, 41, 6071–6074.
(12) For selected examples see: (a) Elzinga, J.; Hogeveen, H. J. Org.
Chem. 1980, 45, 3957–3969. (b) Hayes, T. K.; Freyer, A. J.; Parvez, M.;
Weinreb, S. M. J. Org. Chem. 1986, 51, 5501–5503. (c) Lee, G. M.; Weinreb,
S. M. J. Org. Chem. 1990, 55, 1281–1285.
r
2009 American Chemical Society
Published on Web 07/20/2009
pubs.acs.org/Organometallics