Nantenine as an acetylcholinesterase inhibitor
55
28. Munoz-Ruiz P, Rubio L, Garcia-Palomero E, Dorronsoro I, del
Monte-Millan M, Valenzuela R et al. Design, synthesis, and biological
evaluation of dual binding site acetylcholinesterase inhibitors: new
disease-modifyingagentsforAlzheimer’sdisease.JMedChem2005;48:
7223–7233.
29. Camps P, Formosa X, Munoz-Torrero D, Petrignet J, Badia
A, Clos MV. Synthesis and pharmacological evaluation of
huprine-tacrine heterodimers: subnanomolar dual binding site
acetylcholinesterase inhibitors. J Med Chem 2005;48:1701–1704.
30. Shamma M, Guinaudeau H. Biogenetic pathways for the
aporphinoid alkaloids. Tetrahedron 1984;40:4795–4822.
48. Yasuhara T, Zaima N, Hashimoto S, Yamazaki M, Muraoka O.
First total synthesis of crispine B by nitro aldol and the Bischler-
Napieralski reaction. Heterocycles 2009;77:1397–1402.
49. Hynes PS, Stupple PA, Dixon DJ. Organocatalytic Asymmetric
Total Synthesis of (R)-Rolipram and Formal Synthesis of (3S,4R)-
Paroxetine. Org Lett 2008;10:1389–1391.
50. Liermann JC, Opatz T. Synthesis of lamellarin U and lamellarin G
trimethyl ether by alkylation of a deprotonated alpha-aminonitrile.
J Org Chem 2008;73:4526–4531.
51. Wang YC, Georghiou PE. First enantioselective total synthesis of
(-)-tejedine. Org Lett 2002;4:2675–2678.
31. Si YG, Gardner MP, Tarazi FI, Baldessarini RJ, Neumeyer JL.
Synthesis and binding studies of 2-O- and 11-O-substituted
N-alkylnoraporphines. Bioorg Med Chem Lett 2008;18:3971–3973.
32. Si YG, Gardner MP, Tarazi FI, Baldessarini RJ, Neumeyer JL. R-(-)-N-
alkyl-11-hydroxy-10-hydroxymethyl- and 10-methyl-aporphines as
5-HT1A receptor ligands. Bioorg Med Chem Lett 2007;17:4128–4130.
33. Toth M, Berenyi S, Csutoras C, Kula NS, Zhang K, Baldessarini RJ,
Neumeyer JL. Synthesis and dopamine receptor binding of sulfur-
containing aporphines. Bioorg Med Chem 2006;14:1918–1923.
34. HedbergMH,LinnanenT,JansenJM,NordvallG,HjorthS,UneliusL
et al. 11-substituted (R)-aporphines: synthesis, pharmacology, and
modeling of D2A and 5-HT1A receptor interactions. J Med Chem
1996;39:3503–3513.
52. Chaudhary S, Pecic S, Legendre O, Navarro HA, Harding WW.
(+/-)-Nantenine analogs as antagonists at human 5-HT(2A)
receptors: C1 and flexible congeners. Bioorg Med Chem Lett
2009;19:2530–2532.
53. Rhee IK, van de Meent M, Ingkaninan K, Verpoorte R. Screening for
acetylcholinesterase inhibitors from Amaryllidaceae using silica
gel thin-layer chromatography in combination with bioactivity
staining. J Chromatogr 2001;915:217–223.
54. Cardozo T, Totrov M, Abagyan R. Homology modeling by the ICM
method. Proteins: Structure, Function, and Genetics 1995;23:
403–414.
55. Szegletes T, Mallender WD, Rosenberry TL. Nonequilibrium
analysis alters the mechanistic interpretation of inhibition of
acetylcholinesterase by peripheral site ligands. Biochemistry
1998;37:4206–4216.
35. Kula NS, Baldessarini RJ, Kebabian JW, Neumeyer JL. S-(+)-
aporphines are not selective for human D3 dopamine receptors.
Cell Mol Neurobiol 1994;14:185–191.
56. Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L et al.
Atomic structure of acetylcholinesterase from Torpedo californica:
36. Cannon JG, Jackson H, Long JP, Leonard P, Bhatnagar RK.
5-HT1A-receptor antagonism: N-alkyl derivatives of (R)-(-)-8,11-
dimethoxynoraporphine. J Med Chem 1989;32:1959–1962.
37. Neumeyer JL, Arana GW, Law SJ, Lamont JS, Kula NS, Baldessarini
RJ. Aporphines, 36. Dopamine receptor interactions of
trihydroxyaporphines.Synthesis,radioreceptorbinding,andstriatal
adenylate cyclase stimulation of 2,10,11-trihydroxyaporphines
in comparison with other hydroxylated aporphines. J Med Chem
1981;24:1440–1445.
38. Likhitwitayawuid K, Angerhofer CK, Chai H, Pezzuto JM, Cordell
GA, Ruangrungsi N. Cytotoxic and antimalarial alkaloids from the
tubers of Stephania pierrei. J Nat Prod 1993;56:1468–1478.
39. Chaudhary S, Pecic S, Le Gendre O, Harding WW. Microwave-
assisted direct biaryl coupling: first application to the synthesis of
aporphines. Tetrahedron Lett 2009;50:2437–2439.
a
prototypic acetylcholine-binding protein. Science 1991;253:
872–879.
57. Harel M, Quinn DM, Nair HK, Silman I, Sussman JL. e x-ray
structure of
a transition state analog complex reveals the
molecular origins of the catalytic power and substrate specificity
of acetylcholinesterase. J Am Chem Soc 1996;118:2340–2346.
58. Wallace AC, Laskowski RA, ornton JM. LIGPLOT: a program
to generate schematic diagrams of protein-ligand interactions.
Protein Eng 1995;8:127–134.
59. Perry EK. e cholinergic hypothesis–ten years on. Br Med Bull
1986;42:63–69.
60. Bartus RT, Dean RL, Pontecorvo MJ, Flicker C. e cholinergic
hypothesis: a historical overview, current perspective, and future
directions. Ann N Y Acad Sci 1985;444:332–358.
40. Hung TM, Na M, Dat NT, Ngoc TM, Youn U, Kim HJ et al.
Cholinesterase inhibitory and anti-amnesic activity of
61. Holzgrabe U, Kapkova P, Alptuzun V, Scheiber J, Kugelmann E.
Targeting acetylcholinesterase to treat neurodegeneration. Expert
Opin er Targets 2007;11:161–179.
alkaloids from Corydalis turtschaninovii.
J Ethnopharmacol
2008;119:74–80.
62. Shen Y, Zhang J, Sheng R, Dong X, He Q, Yang B et al. Synthesis and
biological evaluation of novel flavonoid derivatives as dual binding
acetylcholinesteraseinhibitors.JEnzymeInhibMedChem2009;24:
372–380.
41. Tang H, Wei YB, Zhang C, Ning FX, Qiao W, Huang SL et al.
Synthesis, biological evaluation and molecular modeling of
oxoisoaporphine and oxoaporphine derivatives as new dual
inhibitors of acetylcholinesterase/butyrylcholinesterase. Eur
Med Chem 2009;44:2523–2532.
42. Marston A, Kissling J, Hostettmann K. A rapid TLC bioautographic
method for the detection of acetylcholinesterase and
butyrylcholinesterase inhibitors in plants. Phytochem Anal
2002;13:515–4.
43. Adsersen A, Kjolbye A, Dall O, Jager AK. Acetylcholinesterase and
butyrylcholinesterase inhibitory compounds from Corydalis cava
Schweigg. & Kort. J Ethnopharmacol 2007;113:179–182.
44. Abagyan RA, Batalov S. Do aligned sequences share the same fold?
J Mol Biol 1997;273:355–368.
45. Farag NA, Mohamed SR, Soliman GA. Design, synthesis, and
docking studies of novel benzopyrone derivatives as H(1)-
antihistaminic agents. Bioorg Med Chem 2008;16:9009–9017.
46. Shrestha S, Bhattarai BR, Kafle B, Lee, K-H, Cho H. Derivatives
J
63. Haviv H, Wong DM, Silman I, Sussman JL. Bivalent ligands derived
from Huperzine A as acetylcholinesterase inhibitors. Curr Top Med
Chem 2007;7:375–387.
64. Dorronsoro I, Alonso D, Castro A, del Monte M, Garcia-Palomero
E, Martinez A. Synthesis and biological evaluation of tacrine-
thiadiazolidinone hybrids as dual acetylcholinesterase inhibitors.
Arch Pharm (Weinheim) 2005;338:18–23.
65. Markmee S, Ruchirawat S, Prachyawarakorn V, Ingkaninan K,
KhoranaN.Isoquinolinederivativesaspotentialacetylcholinesterase
inhibitors. Bioorg Med Chem Lett 2006 15;16:2170–2172.
66. Ribeiro, RdA, De Lores Arnaiz GR. Nantenine and papaverine
differentially modify synaptosomal membrane enzymes.
Phytomedicine 2000;7:313–323.
67. Tang H, Wei YB, Zhang C, Ning FX, Qiao W, Huang SL et al.
Synthesis, biological evaluation and molecular modeling of
oxoisoaporphine and oxoaporphine derivatives as new dual
of
1,4-bis(3-hydroxycarbonyl-4-hydroxyl)styrylbenzene
as
PTP1B inhibitors with hypoglycemic activity. Bioorg Med Chem
2008;16:8643–8652.
inhibitors of acetylcholinesterase/butyrylcholinesterase. Eur
Med Chem 2009;44:2523–2532.
J
47. Suzuki A. e Suzuki reaction with arylboron compounds in arene
chemistry. In: Suzuki A. ed Modern Arene Chemistry. New York:
Wiley-VCH, 2002:53–106.
68. Hitchcock SA. Blood-brain barrier permeability considerations
for CNS-targeted compound library design. Curr Opin Chem Biol
2008;12:318–323.
© 2011 Informa UK, Ltd.