5174 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 16
Yamamoto et al.
pathic conformations in the presence of lipid bilayers. J. Am. Chem.
Soc. 2005, 127, 5435–5448.
Diego, CA, Nov 3-7, 2007; Poster 725, Visceral Pain: Transmitters
and Receptors.
(13) Egleton, R. D.; Davis, T. P. Development of neuropeptide drugs
that cross the blood-brain barrier. NeuroRx 2005, 2, 44–53.
(14) Egleton, R. D.; Mitchell, S. A.; Huber, J. D.; Janders, J.; Stropova,
D.; Polt, R.; Yamamura, H. I.; Hruby, V. J.; Davis, T. P. Improved
bioavailability to the brain of glycosylated Met-enkephalin ana-
logs. Brain. Res. 2000, 881, 37–46.
(15) Palian, M. M.; Boguslavsky, V. I.; O’Brien, D. F.; Polt, R.
Glycopeptide-membrane interactions: glycosyl enkephalin analo-
gues adopt turn conformations by NMR and CD in amphipathic
media. J. Am. Chem. Soc. 2003, 125, 5823–5831.
(16) Live, D. H.; Williams, L. J.; Kuduk, S. D.; Schwarz, J. B.; Glunz,
P. W.; Chen, X. T.; Sames, D.; Kumar, R. A.; Danishefsky, S. J.
Probing cell-surface architecture through synthesis: an NMR-
determined structural motif for tumor-associated mucins. Proc.
Natl. Acad. Sci. U.S.A. 1999, 96, 3489–3493.
(17) McManus, A. M.; Otvos, L., Jr.; Hoffmann, R.; Craik, D. J.
Conformational studies by NMR of the antimicrobial peptide,
drosocin, and its non-glycosylated derivative: effects of glycosyla-
tion on solution conformation. Biochemistry 1999, 38, 705–714.
(18) Lis, H.; Sharon, N. Protein glycosylation. Structural and func-
tional aspects. Eur. J. Biochem. 1993, 218, 1–27.
(32) Largent-Milnes, T. M.; Yamamoto, T.; Nair, P.; Navratrilova, E.;
Davis, P.; Ma, S.-W.; Hruby, V. J.; Yamamura, H. I.; Lai, J.;
Porreca, F.; Vanderah, T. W. Dual Acting Opioid Agonist/
NK1 Antagonist Peptide Reverses Neuropathic Pain in an Animal
Model Withoug Demonstrating Common Opioid Unwanted
Side Effects. Presented at the International Association for the
Study of Pain/12th World Congress on Pain, Glasgow, Scotland,
2008.
(33) Cirino, P. C.; Tang, Y.; Takahashi, K.; Tirrell, D. A.; Arnold, F. H.
Global incorporation of norleucine in place of methionine in
cytochrome P450 BM-3 heme domain increases peroxygenase
activity. Biotechnol. Bioeng. 2003, 83, 729–734.
(34) Gilles, A. M.; Marliere, P.; Rose, T.; Sarfati, R.; Longin, R.; Meier,
A.; Fermandjian, S.; Monnot, M.; Cohen, G. N.; Barzu, O.
Conservative replacement of methionine by norleucine in Escher-
ichia coli adenylate kinase. J. Biol. Chem. 1988, 263, 8204–8209.
(35) Sawyer, T. K.; Sanfilippo, P. J.; Hruby, V. J.; Engel, M. H.;
Heward, C. B.; Burnett, J. B.; Hadley, M. E. 4-Norleucine, 7-D-
phenylalanine-alpha-melanocyte-stimulating hormone: a highly
potent alpha-melanotropin with ultralong biological activity. Proc.
Natl. Acad. Sci. U.S.A. 1980, 77, 5754–5758.
(19) Yamamoto, T.; Nair, P.; Davis, P.; Ma, S. W.; Navratilova, E.;
Moye, M.; Tumati, S.; Vanderah, T. W.; Lai, J.; Porreca, F.;
Yamamura, H. I.; Hruby, V. J. Design, synthesis and biological
evaluation of novel bifunctional C-terminal modified peptides for
δ/μ opioid receptor agonists and neurokinin-1 receptor antago-
nists. J. Med. Chem. 2007, 50, 2779–2786.
(20) Yamamoto, T.; Nair, P.; Jacobsen, N. E.; Davis, P.; Ma, S. W.;
Navratilova, E.; Lai, J.; Yamamura, H. I.; Vanderah, T. W.;
Porreca, F.; Hruby, V. J. The importance of micelle-bound states
for the bioactivities of bifunctional peptide derivatives for δ/μ
opioid receptor agonists and neurokinin 1 receptor antagonists.
J. Med. Chem. 2008, 51, 6334–6347.
(36) Jacobsen, N. E.; Abadi, N.; Sliwkowski, M. X.; Reilly, D.; Skelton,
N. J.; Fairbrother, W. J. High-resolution solution structure of the
EGF-like domain of heregulin-alpha. Biochemistry 1996, 35, 3402–
3417.
(37) Ying, J.; Ahn, J. M.; Jacobsen, N. E.; Brown, M. F.; Hruby, V. J.
NMR solution structure of the glucagon antagonist [desHis1,
desPhe6, Glu9]glucagon amide in the presence of perdeuterated
dodecylphosphocholine micelles. Biochemistry 2003, 42, 2825–2835.
(38) Matsumori, N.; Houdai, T.; Murata, M. Conformation and posi-
tion of membrane-bound amphotericin B deduced from NMR in
SDS micelles. J. Org. Chem. 2007, 72, 700–706.
(39) Dorner, B.; White, P. In Peptides 1998, Proceedings of the 25th
(21) Yamamoto, T.; Nair, P.; Vagner, J.; Davis, P.; Ma, S. W.;
Navratilova, E.; Moye, M.; Tumati, S.; Vanderah, T. W.; Lai, J.;
Porreca, F.; Yamamura, H. I.; Hruby, V. J. A structure activity
relationship study and combinatorial synthetic approach of C-
terminal modified bifunctional peptides that are δ/μ opioid recep-
tor agonists and neurokinin 1 receptor antagonists. J. Med. Chem.
2008, 51, 1369–1376.
(22) King, T.; Gardell, L. R.; Wang, R.; Vardanyan, A.; Ossipov,
M. H.; Malan, T. P., Jr.; Vanderah, T. W.; Hunt, S. P.; Hruby,
V. J.; Lai, J.; Porreca, F. Role of NK-1 neurotransmission in
opioid-induced hyperalgesia. Pain 2005, 116, 276–288.
European Peptide Symposium; Bajusz, S. H., Hudecz, F., Eds.;
Akademiai Kiado: Budapest, Hungary, 1999; p 90.
ꢀ
ꢀ
(40) Seibel, J.; Hillringhaus, L.; Moraru, R. Microwave-assisted glyco-
sylation for the synthesis of glycopeptides. Carbohydr. Res. 2005,
340, 507–511.
(41) Millet, R.; Goossens, L.; Bertrand-Caumont, K.; Chavatte, P.;
Houssin, R.; Henichart, J. P. Synthesis and biological evaluation of
tripeptide derivatives of Cbz-Gly-Leu-Trp-OBzl(CF3)2 as NK1/
NK2 ligands. Lett. Pept. Sci. 1999, 6, 255–262.
(42) Cascieri, M. A.; Macleod, A. M.; Underwood, D.; Shiao, L. L.; Ber,
E.; Sadowski, S.; Yu, H.; Merchant, K. J.; Swain, C. J.; Strader, C.
D.; Fong, T. M. Characterization of the interaction of N-acyl-L-
tryptophan benzyl ester neurokinin antagonists with the human
neurokinin-1 receptor. J. Biol. Chem. 1994, 269, 6587–6591.
(43) Datar, P.; Srivastava, S.; Coutinho, E.; Govil, G. Substance P:
structure, function, and therapeutics. Curr. Top. Med. Chem. 2004,
4, 75–103.
(44) Millet, R.; Domarkas, J.; Rigo, B.; Goossens, L.; Goossens, J. F.;
Houssin, R.; Henichart, J. P. Novel potent substance P and
neurokinin A receptor antagonists. Conception, synthesis and
biological evaluation of indolizine derivatives. Bioorg. Med. Chem.
2002, 10, 2905–2912.
(45) D’Alagni, M.; Delfini, M.; Di Nola, A.; Eisenberg, M.; Paci, M.;
Roda, L. G.; Veglia, G. Conformational study of [Met5]-
enkephalin-Arg-Phe in the presence of phosphatidylserine vesicles.
Eur. J. Biochem. 1996, 240, 540–549.
(46) Deber, C. M.; Behnam, B. A. Role of membrane lipids in peptide
hormone function: binding of enkephalins to micelles. Proc. Natl.
Acad. Sci. U.S.A. 1984, 81, 61–65.
(47) Lazaridis, T.; Mallik, B.; Chen, Y. Implicit solvent simulations of
DPC micelle formation. J. Phys. Chem. B 2005, 109, 15098–15106.
(48) Weiner, S. J.; Kollman, P. A.; Case, D. A. An all atom force field
for simulations of proteins and nucleic acids. J. Comput. Chem.
1986, 7, 230–252.
(49) Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C.; Ghio, C.;
Alagona, G. S.; Profeta, J.; Weiner, P. A new force field for
molecular mechanical simulation of nucleic acids and proteins.
J. Am. Chem. Soc. 1984, 106, 765–784.
(23) Ma, W.; Zheng, W. H.; Kar, S.; Quirion, R. Morphine treatment
induced calcitonin gene-related peptide and substance P increases
in cultured dorsal root ganglion neurons. Neuroscience 2000, 99,
529–539.
(24) Powell, K. J.; Quirion, R.; Jhamandas, K. Inhibition of neuroki-
nin-1-substance P receptor and prostanoid activity prevents and
reverses the development of morphine tolerance in vivo and the
morphine-induced increase in CGRP expression in cultured dorsal
root ganglion neurons. Eur. J. Neurosci. 2003, 18, 1572–1583.
(25) Misterek, K.; Maszczynska, I.; Dorociak, A.; Gumulka, S. W.;
Carr, D. B.; Szyfelbein, S. K.; Lipkowski, A. W. Spinal co-adminis-
tration of peptide substance P antagonist increases antinociceptive
effect of the opioid peptide biphalin. Life Sci. 1994, 54, 939–944.
(26) Gu, G.; Kondo, I.; Hua, X. Y.; Yaksh, T. L. Resting and evoked
spinal substance P release during chronic intrathecal morphine
infusion: parallels with tolerance and dependence. J. Pharmacol.
Exp. Ther. 2005, 314, 1362–1369.
(27) Dickenson, A. H. Plasticity: implications for opioid and other
pharmacological interventions in specific pain states. Behav. Brain
Sci. 1997, 20, 392–403.
(28) Chang, K. J.; Rigdon, G. C.; Howard, J. L.; McNutt, R. W. A novel
potent and selective nonpeptidic delta opioid receptor agonist
BW373U86. J. Pharmacol. Exp. Ther. 1993, 267, 852–857.
(29) Sheldon, R. J.; Riviere, P. J.; Malarchik, M. E.; Mosberg, H. I.;
Burks, T. F.; Porreca, F. Opioid regulation of mucosal ion trans-
port in the mouse isolated jejunum. J. Pharmacol. Exp. Ther. 1990,
253, 144–151.
(30) Cowan, A.; Zhu, X. Z.; Mosberg, H. I.; Omnaas, J. R.; Porreca, F.
Direct dependence studies in rats with agents selective for different
types of opioid receptor. J. Pharmacol. Exp. Ther. 1988, 246, 950–
955.
(31) Largent-Milnes, T. M.; Yamamoto, T.; Davis, P.; Ma, S. W.;
Hruby, V. J.; Yamamura, H. I.; Lai, J.; Porreca, F.; Vanderah,
T. W. Dual Acting Opioid Agonist/NK1 Antagonist Reverses
Neuropathic Pain and Does Not Produce Tolerance. Presented at
the 37th Annual Meeting of the Society for Neuroscience, San
(50) Wagner, G.; Neuhaus, D.; Worgotter, E.; Vasak, M.; Kagi, J. H.;
Wuthrich, K. Nuclear magnetic resonance identification of “half-
turn” and 3(10)-helix secondary structure in rabbit liver metal-
lothionein-2. J. Mol. Biol. 1986, 187, 131–135.
(51) Flippen-Anderson, J. L.; Hruby, V. J.; Collins, N.; George, C.;
Cudney, B. X-ray structure of [D-Pen2,D-Pen5]enkephain, a highly
potent, delta opioid receptor-selective compound: comparisons
with proposed solution conformations. J. Am. Chem. Soc. 1994,
116, 7523–7531.