auxiliaries, their applications in industry for large scale
production might prove difficult. In this letter, we report a
new efficient synthesis of (S)-R-alkyl-R,ꢀ-diaminopropionic
acids via asymmetric phase-transfer catalytic R-alkylation
of imidazoline-4-carboxylates which could be applied to
industrial process.6,7
protect the N(1)-H of the imidazoline. Five kinds of N(1)-
acyl protections with acid chlorides or acid anhydrides in
the presence of triethylamine gave N(1)-acylimidazolines
7a-e, which were then converted to the corresponding
tert-butyl esters 8a-e by transesterification using AlMe3
and tert-butanol in toluene8b (Scheme 2).
Very recently, we reported a series of new synthetic
methods for optically active R-alkylserines and R-alkylcys-
teines by the catalytic enantioselective R-alkylation of tert-
butyl 2-phenyloxazoline-4-carboxylate and tert-butyl 2-phe-
nylthiazoline-4-carboxylate under phase-transfer conditions,
respectively.8 These works demonstrated that the phase-
transfer catalytic conditions are very efficient for the R-alky-
lation of the oxazoline-4-carboxylate and the thiazoline-4-
carboxylate systems. On the basis of our previous results,
we attempted to apply the phase-transfer catalytic alkylation
of imidazoline-4-carboxylate system 3 for the enantioselec-
tive synthesis of chiral R-alkyl-R,ꢀ-diaminopropionic acids
1 (Scheme 1).
Scheme 2. Preparation of 2-Phenyl-2-imidazoline-4-carboxylates
Scheme 1. Synthetic Strategy for Optically Active
R-Alkyl-R,ꢀ-diaminopropionic Acids via Asymmetric
Phase-Transfer Catalysis
For asymmetric phase-transfer catalytic alkylation, we
adapted our previous reaction conditions.8 phase-transfer
catalytic benzylations of 8a-8e were performed using 5.0
mol % of the representative phase-transfer catalysts (PTCs)9
(10,9a 11,9b 129c) along with benzyl bromide (5.0 equiv) and
solid KOH (5.0 equiv) in toluene at 0 °C for 1.5-16 h.
First, the substrate, N(1)-protected-2-phenyl-2-imida-
zoline-4-carboxylic acid tert-butyl ester 3, was prepared
from commercially available R,ꢀ-diaminopropionic acid
(4) in four steps. The methyl esterification of 4 using
thionyl chloride in methanol, followed by coupling with
ethyl benzimidate, afforded methyl 2-phenyl-2-imidazo-
line-4-carboxylate (6). Before the transesterification of 6
to the corresponding tert-butyl ester, it was necessary to
(5) (a) Colson, P. J.; Hegedus, L. S. J. Org. Chem. 1993, 58, 5918. (b)
Jolles, R. C. F.; Crockett, A. K.; Rees, D. C.; Gilbert, I. H. Tetrahedron:
Asymmetry 1994, 5, 1661. (c) Cativiela, C.; D´ıaz-de-Villegas, M. D.; Ga´lvez,
J. A. Tetrahedron: Asymmetry 1994, 5, 1465. (d) Badorrey, R.; Cativiela,
C.; D´ıaz-de-Villegas, M. D.; Ga´lvez, J. A. Tetrahedron: Asymmetry 1995,
6, 2787. (e) Castellanos, E.; Reyes-Rangel, G.; Juaristi, E. HelV. Chim. Acta
As shown in Table 1, the binaphthalene-derived PTC 12
(entry 3, 98% ee) showed the best enantioselectivity, while
the cinchona PTCs 10 (entry 1, 72% ee) and 11 (entry 2,
75% ee) afforded low and moderate enantioselectivity,
respectively. The chemical yields and enantioselectivities
were variable depending on the N(1)-protective group of the
imidazoline substrates. In terms of enantioselectivity, the tert-
butyl-possessing acyl groups (8e, 8c, 8d) gave very high
enantioselectivities (entry 3, 98% ee; entry 6, 98% ee; entry
7, 95% ee). The bulky tert-butyl groups might play an
2004, 87, 1016
.
(6) For recent reviews on the phase-transfer catalysis, see: (a) Maruoka,
K.; Ooi, T. Chem. ReV. 2003, 103, 3013. (b) O’Donnell, M. J. Acc. Chem.
Res. 2004, 37, 506. (c) Lygo, B.; Andrews, B. I. Acc. Chem. Res. 2004, 37,
518. (d) Hashimoto, T.; Maruoka, K. Chem. ReV. 2007, 107, 5656
.
(7) For our recent reports on the asymmetric phase-transfer catalytic
alkylation, see: (a) Jew, S.-s.; Jeong, B.-S.; Yoo, M.-S.; Huh, H.; Park,
H.-g. Chem. Commun. 2001, 1244. (b) Park, H.-g.; Jeong, B.-S.; Yoo, M.-
S.; Park, M.-k.; Huh, H.; Jew, S.-s. Tetrahedron Lett. 2001, 42, 4645. (c)
Park, H.-g.; Jeong, B.-S.; Yoo, M.-S.; Lee, J.-H.; Park, M.-k.; Lee, Y.-J.;
Kim, M.-J.; Jew, S.-s. Angew. Chem., Int. Ed. 2002, 41, 3036. (d) Jew,
S.-s.; Yoo, M.-S.; Jeong, B.-S.; Park, I. Y.; Park, H.-g. Org. Lett. 2002, 4,
4245. (e) Yoo, M.-S.; Jeong, B.-S.; Lee, J.-H.; Park, H.-g.; Jew, S.-s. Org.
Lett. 2005, 7, 1129
.
(8) (a) Jew, S.-s.; Lee, Y.-J.; Lee, J.; Kang, M. J.; Jeong, B.-S.; Lee,
J.-H.; Yoo, M.-S.; Kim, M.-J.; Choi, S.-h.; Ku, J.-M.; Park, H.-g. Angew.
Chem., Int. Ed. 2004, 43, 2382. (b) Kim, T.-S.; Lee, Y.-J.; Jeong, B.-S.;
Park, H.-g.; Jew, S.-s. J. Org. Chem. 2006, 71, 8276. (c) Kim, T.-S.; Lee,
Y.-J.; Lee, K.; Jeong, B.-S.; Park, H.-g.; Jew, S.-s. Synlett 2009, 671.
(9) (a) Corey, E. J.; Xu, F.; Noe, M. C. J. Am. Chem. Soc. 1997, 119,
12414. (b) Jew, S.-s.; Yoo, M.-S.; Jeong, B.-S.; Park, H.-g. Org. Lett. 2002,
4, 4245. (c) Ooi, T.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc. 2003,
125, 5139.
Org. Lett., Vol. 11, No. 16, 2009
3739