À
Copper(II)-Catalyzed C C Bond-Forming Reactions
COMMUNICATIONS
Portella, Tetrahedron 2005, 61, 4395–4402, and referen-
ces cited therein.
In summary, we have developed a new Cu(II)-cata-
lyzed C C bond forming reaction. A wide range of
À
[4] For the reactions and applications of silylketene S,S-
acetals, see: a) T. Okauchi, T. Tanaka, T. Minami, J.
Org. Chem. 2001, 66, 3924–3929; b) S. Yahiro, K. Shi-
bata, T. Saito, T. Okauchi, T. Minami, J. Org. Chem.
2003, 68, 4947–4950.
[5] For selected examples, see: a) X. Bi, D. Dong, Q. Liu,
W. Pan, L. Zhao, B. Li, J. Am. Chem. Soc. 2005, 127,
4578–4579; b) F. Liang, J. Zhang, J. Tan, Q. Liu, Adv.
Synth. Catal. 2006, 348, 1986–1990; c) X. Bi, J. Zhang,
Q. Liu, J. Tan, B. Li, Adv. Synth. Catal. 2007, 349,
2301–2306; d) J. Liu, M. Wang, B. Li, Q. Liu, Y. Zhao,
J. Org. Chem. 2007, 72, 4401–4405; e) J. Liu, D. Liang,
M. Wang, Q. Liu, Synthesis 2008, 3633–3638.
densely functionalized double-coupling products 3
were obtained in excellent yields by reacting the read-
ily available a-EWG-substituted ketene S,S-acetals
with a variety of aldehydes and ketones under very
mild reaction conditions. Based on this catalytic pro-
cess, coumarin derivatives were synthesized in high
yields. The efficiency and convenience of the coumar-
in syntheses along with a broad range of EWG groups
at the 3-position make this synthetic strategy very at-
tractive for practical applications. Further studies on
the reaction mechanism and synthetic potential of this
catalytic reaction are in progress.
[6] a) S. Gill, P. Kocienski, A. Kohler, A. Pontiroli, Q. Liu,
Chem. Commun. 1996, 1743–1744; b) K. Panda, J. R.
Suresh, H. Ila, H. Junjappa, J. Org. Chem. 2003, 68,
3498–3506; c) S. Peruncheralathan, T. A. Khan, H. Ila,
H. Junjappa, J. Org. Chem. 2005, 70, 10030–10035.
[7] a) Y. Yin, M. Wang, Q. Liu, J. Hu, S. Sun, J. Kang, Tet-
rahedron Lett. 2005, 46, 4399–4402; b) S. Sun, Q.
Zhang, Q. Liu, J. Kang, Y. Yin, D. Li, D. Dong, Tetra-
hedron Lett. 2005, 46, 6271–6274; c) W. Pan, D. Dong,
S. Sun, Q. Liu, Synlett 2006, 1090–1094; d) Q. Zhang,
Y. Liu, M. Wang, Q. Liu, J. Hu, Y. Yin, Synthesis 2006,
3009–3014; e) Y. Yin, Q. Zhang, J. Li, S. Sun, Q. Liu,
Tetrahedron Lett. 2006, 47, 6071–6074; f) Q. Zhang, S.
Sun, J. Hu, Q. Liu, J. Tan, J. Org. Chem. 2007, 72, 139–
143; g) S. Sun, M. Wang, H. Deng, Q. Liu, Synthesis
2008, 573–583; h) Z. Fu, M. Wang, Y. Ma, Q. Liu, J.
Liu, J. Org. Chem. 2008; 73, 7625–7630.
Experimental Section
À
General Procedure for the CuBr2-Catalyzed C C
Bond-Forming Reactions of 1 with 2 (taking the
Reaction of 1a and 2a as an Example)
To a solution of 2-(1,3-dithiolan-2-ylidene)acetonitrile 1a
(143 mg, 1.0 mmol) and 4-chlorobenzaldehyde 2a (70 mg,
0.5 mmol) in dry acetonitrile (4.0 mL) was added CuBr2
(11.2 mg, 0.05 mmol). The reaction mixture was stirred for
12 h at room temperature and monitored by TLC. After
completion, the reaction mixture was poured into ice-water
(20 mL). The precipitate was collected by filtration, washed
with water (3ꢂ20 mL), and dried under vacuum to afford
the product 3aa as a white solid; yield: 199 mg (98%).
[8] a) H. S. P. Rao, S. Sivakumar, J. Org. Chem. 2006, 71,
8715–8723; b) E. R. Anabha, C. V. A. Asokan, Synthe-
sis 2006, 151–155.
Acknowledgements
[9] a) M. Wang, X. X. Xu, Q. Liu, L. Xiong, B. Yang, L.
Gao, Synth. Commun. 2002, 32, 3437–3443; b) Y.-L.
Zhao, Q. Liu, R. Sun, Q. Zhang, X. X. Xu, Synth.
Commun. 2004, 34, 463–469.
[10] a) C.-J. Li, Acc. Chem. Res. 2002, 35, 533–538; b) B. M.
Trost, F. D. Toste, A. B. Pinkerton, Chem. Rev. 2001,
101, 2067–2096; c) S. R. Chemler, D. Trauner, S. J.
Danishefsky, Angew. Chem. 2001, 113, 4676–4701;
Angew. Chem. Int. Ed. 2001, 40, 4544–4568; d) K. C.
Nicolaou, P. G. Bulger, D. Sarlah, Angew. Chem. 2005,
117, 4516–4563; Angew. Chem. Int. Ed. 2005, 44, 4442–
4489.
Financial support of this research by the National Natural
Science Foundation of China (20672019 and 20872015), the
Ministry of Education of China (108044), and the Training
Fund of NENUꢀs Scientific Innovation Fund are greatly ac-
knowledged.
References
[1] For reviews on a-oxoketene S,S-acetals, see: a) R. K.
Dieter, Tetrahedron 1986, 42, 3029–3096; b) H. Junjap-
pa, H. Ila, C. V. Asokan, Tetrahedron 1990, 46, 5423–
5506; c) G. H. Elgemeie, S. H. Sayed, Synthesis 2001,
1747–1771.
[2] For synthesis and synthetic application of phosphono-
ketene S,S-acetals, see: a) T. Minami, T. Okauchi, H.
Matsuki, M. Nakamura, J. Ichikawa, M. Ishida, J. Org.
Chem. 1996, 61, 8132–8140; b) R. Kouno, T. Okauchi,
M. Nakamura, J. Ichikawa, T. Minami, J. Org. Chem.
1998, 63, 6239–6246.
[3] For synthesis and synthetic applications of fluorinated
ketene S,S-acetals, see: a) M. Muzard, C. Portella, J.
Org. Chem. 1993, 58, 29–31; b) M. C. Pirrung, E. G.
Rowley, C. P. Holmes, J. Org. Chem. 1993, 58, 5683–
5689; c) E. Sotoca, J.-P. Bouillon, S. Gil, M. Parra, C.
[11] a) M. Shibasaki, M. Kanai, Chem. Rev. 2008, 108,
2853–2873; b) A. Alexakis, J. E. Bꢃckvall, N. Krause,
O. Pꢄmies, M. Diꢅguez, Chem. Rev. 2008, 108, 2796–
2823.
2
À
[12] For selected examples on oxygen-directed Csp H acti-
vations, see: a) B. M. Trost, K. Imi, I. W. Davies, J. Am.
Chem. Soc. 1995, 117, 5371–5372; b) T. Satoh, Y. Ka-
wamura, M. Miura, M. Nomura, Angew. Chem. 1997,
109, 1820–1822; Angew. Chem. Int. Ed. Engl. 1997, 36,
1740–1742; c) K. Tsuchikama, Y. Kuwata, Y.-k. Tahara,
Y. Yoshinami, T. Shibata, Org. Lett. 2007, 9, 3097–
3099; d) K. Tanaka, Y. Otake, A. Wada, K. Noguchi,
M. Hirano, Org. Lett. 2007, 9, 2203–2206.
[13] For selected examples on nitrogen-directed Csp H ac-
2
À
tivations, see: a) D. A. Colby, R. G. Bergman, J. A.
Adv. Synth. Catal. 2009, 351, 112 – 116
ꢁ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
115