Silica Boron Sulfuric Acid Nanoparticles As an Efficient and Reusable Catalyst
7
product was precipitated and pure product was ob-
tained by its recrystallization in ethanol.
129.7, 129.8, 130.5, 133.0, 136.2, 143.9; Anal. Calcd
for C14H11N3O2 (253.2): C, 66.40; H, 4.38; N, 16.59.
Found: C, 66.38; H, 4.34; N, 16.52.
2-Morpholino-2-phenylacetonitrile. Yield; 91%;
white solid; mp 68–70◦C; 1H NMR (300 MHz,
CDCl3/TMS): δ = 2.61 (t, J = 4.7 Hz, 4H), 3.69–3.81
(m, 4H), 4.85 (s, 1H), 7.41–7.57 (m, 5H); 13C NMR
(75 MHz, CDCl3/TMS): δ = 50, 62.5, 66.7, 115.2,
128.0, 128.9, 129.1, 132.5; Anal. Calcd for C12H14N2O
(202.2): C, 71.26; H, 6.98; N, 13.85. Found: C, 71.19;
H, 6.91; N, 13.78.
ACKNOWLEDGMENT
We acknowledge Shiraz University for partial sup-
port of this work.
2-(2,4-Dichlorophenyl)-2-(phenylamino) acetoni-
trile (Table 2, entry 4). Yield: 97%; pale yellow solid;
mp 116–118◦C; 1H NMR (300 MHz, CDCl3/TMS): δ =
4.05 (brs, 1H, NH), 5.7 (s, 1H), 6.77–7.71 (m, 8H); 13C
NMR (75 MHz, CDCl3/TMS): δ = 47.7, 114.4, 117.4,
120.8, 128.1, 129.7, 129.9, 130.4, 134.3, 136.5; Anal.
Calcd for C14H10Cl2N2 (277.1): C, 60.67; H, 3.64; N,
10.11. Found: C, 60.61; H, 3.59; N, 10.05.
2-(p-Tolylamino)-2-(4-chlorophenyl)acetonitrile
(Table 2, entry 5). Yield: 96%, yellow solid; mp
86–88◦C; 1H NMR (300 MHz, CDCl3/TMS): δ =
2.31 (s, 3H), 3.97 (brs, 1H, NH), 5.4 (s, 1H), 6.7
(d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 7.44
(d, J = 8.6 Hz, 2H), 7.56 (d, J = 8.3 Hz, 2H); 13C
NMR (75 MHz, CDCl3/TMS): δ = 20.6, 50.2, 114.7,
118.0, 128.6, 129.5, 130.1, 132.7, 142.1; Anal. Calcd
for C15H13ClN2 (256.7): C, 70.18; H, 5.10; N, 10.91.
Found: C, 70.11; H, 5.02; N, 10.86.
2-(4-Methoxyphenyl)-2-(phenylamino) acetoni-
trile (Table 2, entry 6). Yield: 95%; pale yellow solid;
mp 96–97◦C; 1H NMR (300 MHz, CDCl3/TMS): δ
= 3.85 (s, 3H), 4.01 (brs, 1H, NH), 5.38 (s, 1H),
6.8 (d, J = 8.0 Hz, 2H), 6.90–7.00 (m, 3H), 7.27–
7.33 (m, 2H), 7.53 (d, J = 8.0 Hz, 2H); 13C NMR
(75 MHz, CDCl3/TMS): δ = 49.7, 55.5, 114.2, 114.7,
118.4, 120.2, 126.0, 128.6, 129.6, 144.8, 160.5; Anal.
Calcd for C14H10Cl2N2 (238.3): C, 75.61; H, 5.92; N,
11.76. Found: C, 75.55; H, 5.84; N, 11.71.
2-(p-Tolylamino)-2-(4-fluorophenyl)acetonitrile
(Table 2, entry 7). Yield: 94%; white solid; mp
100–102◦C; 1H NMR (300 MHz, CDCl3/TMS): δ =
2.20 (s, 3H), 3.82 (brs, 1H, NH), 5.30 (s, 1H), 6.61
(d, J = 8.4 Hz, 2H), 6.9–7.09 (m, 4H), 7.48–7.53 (m,
2H); 13C NMR (75 MHz, CDCl3/TMS): δ = 20.5, 50.1,
114.7, 116.2, 116.5, 118.2, 129.1, 126.0, 130.1, 142.2,
161.6; Anal. Calcd for C15H13FN2 (240.3): C, 74.98;
H, 5.45; N, 11.66. Found: C, 74.91; H, 5.41; N, 11.60.
2-(3-Nitrophenyl)-2-(phenylamino)acetonitrile
(Table 2, entry 8). Yield: 95%; pale yellow solid; mp
90–92◦C; 1H NMR (300 MHz, CDCl3/TMS): δ = 4.19
(brs, 1H, NH), 5.6 (s, 1H), 6.8 (d, J = 8.0 Hz, 2H),
6.97 (t, J = 8.0 Hz, 1H), 7.31 (d, J = 10.0 Hz, 2H),
7.7 (t, J = 8.0 Hz, 1H), 8 (d, J = 7.1 Hz, 1H), 8.33
(d, J = 8.0 Hz, 1H), 8.5 (s, 1H); 13C NMR (75 MHz,
CDCl3/TMS): δ = 49.7, 114.7, 121.2, 122.4, 124.5,
REFERENCES
[1] Horva´th, I. T.; Anastas, P. T. Chem Rev 2007, 107,
2169.
[2] Ran, N.; Zhao, L.; Chen, Z.; Tao, J. Green Chem 2008,
10, 361.
[3] Polshettiwar, V.; Varma, R. S. Green Chem 2010, 12,
743.
[4] (a) Melero, J. A.; Grieken, R. V.; Morales, G. Chem
Rev 2006, 106, 3790; (b) Kitano, M.; Nakajima, K.;
Kondo, J. N.; Hayashi, S.; Hara, M. J Am Chem Soc
2010, 132, 6622; (c) Karimi, B.; Khalkhali, M. J Mol
Catal A Chem 2005, 232, 113; (d) Chakraborti, A.
K.; Singh, B.; Chankeshwara, S. V.; Patel, A. R. J
Org Chem 2009, 74, 5967; (e) Kumar, A.; Gupta, G.;
Srivastava, S. J Comb Chem 2010, 12, 458; (f) Pari-
ente, S.; Tanchoux, N.; Fajula, F. Green Chem 2009,
11, 1256.
[5] (a) Yadav, G. D.; Murkute, A. D. Langmuir 2004, 20,
11607; (b) Srilatha, K.; Kumar, C. R.; Devi, B. L. A. P.;
Prasad, R. B. N.; Prasad, P. S. S.; Lingaiah, N. Catal
Sci Technol 2011, 1, 662; (c) Tian, X.; Su, F.; Zhao,
X. S. Green Chem 2008, 10, 951; (d) Getty, E. E.;
Drago, R. S. Inorg Chem 1990, 29, 1186; (e) Luque,
R.; Budarin, V.; Clark, J. H.; Macquarrie, D. J. Green
Chem 2009, 11, 459.
[6] (a) Hicks, J. C.; Mullis, B. A.; Jones, C. W. J Am Chem
Soc 2007, 129, 8426; (b) Quinn, C. R.; Clark, J. H.;
Tavener, S. J.; Wilson, K. Green Chem 2003, 5, 602;
(c) Keana, J. F. W.; Shimizu, M.; Jernstedt, K. K.
J Org Chem 1986, 51, 1641; (d) Karam, A.; Gu, Y.;
Je´roˆme, F.; Douliez, J. P.; Barrault, J. Chem Commun
2007, 2222; (e) Motokura, K.; Itagaki, S.; Iwasawa,
Y.; Miyaji, A.; Baba, T. Green Chem 2009, 11, 1876;
(f) Price, P. M.; Clark, J. H.; Martin, K.; Macquarrie,
D. J.; Bastock, T. W. Org Process Res Dev 1998, 2,
221.
[7] Fan, J.; Chen, S.; Gao, Y. Colloids Surf, B 2003, 28,
199.
[8] (a) Kell, A. J.; Stringle, D. L. B.; Workentin, M. S. Org
Lett 2000, 2, 3381; (b) Wang, J.; Sugawara-Narutaki,
A.; Fukao, M.; Yokoi, T.; Shimojima, A.; Okubo, T.
ACS Appl Mater Interfaces 2011, 3, 1538.
[9] Khalafi-Nezhad, A.; Foroughi, H. O.; Doroodmand,
M. M.; Panahi, F. J Mater Chem 2011, 21, 12842.
[10] (a) Chakraborty, T. K.; Reddy, G. V.; Hussain, K.
A. Tetrahedron Lett 1991, 32, 7597; (b) Leblanc,
J.; Gibson, H. W. Tetrahedron Lett 1992, 33, 6295;
(c) Zhong, Y. L.; Lee, J.; Reamer, R. A.; Askin, D. Org
Lett 2004, 6, 929; (d) Enders, D.; Shilvock, J. P. Chem
Soc Rev 2000, 29, 359; (e) Failla, S.; Finocchiaro, P.;
Consiglio, G. A. Heteroatom Chem 2000, 11, 493.
[11] (a) Dyker, G. Angew Chem, Int Ed Engl 1997, 36,
1700; (b) Bergner, I.; Wiebe, C.; Meyer, N.; Opatz,
Heteroatom Chemistry DOI 10.1002/hc