10.1002/anie.201908885
Angewandte Chemie International Edition
COMMUNICATION
Keywords: Phosphorus • Aromaticity • cyclo-P4 •
Molybdenum • Isocyanide
Conflict of Interest
The authors declare no conflict of interest.
[1]
[2]
P. v. R. Schleyer, H. Jiao, Pure Appl, Chem. 1996, 68, 209-
218.
T. M. Krygowski, M. K. Cyrañski, Z. Czarnocki, G.
Häfelinger, A. R. Katritzky, Tetrahedron 2000, 56, 1783-
1796.
Scheme 3. Synthesis of the neutral paramagnetic cyclo-P4 complex 6.
[3]
[4]
[5]
Y. Matsuo, M. Maruyama, Chem. Commun. 2012, 48, 9334-
9342.
the more positive value for [4]2– arising from the contributions
of the exo-cyclic phosphorus lone pairs, which are known to
oppose calculated diatropic ring currents.[48]
M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu, T. Higuchi, J.
Am. Chem. Soc. 1981, 103, 4587-4589.
A. H. Cowley, A. Decken, N. Norman, C. Krüger, F. Lutz, H.
Jacobsen, T. Ziegler, J. Am. Chem. Soc. 1997, 119, 3389-
3390.
P. P. Power, Chem. Rev. 1999, 99, 3463-3503.
O. J. Scherer, T. Brück, Angew. Chem. Int. Ed. 1987, 26, 59.
E. Urne˙žius, W. W. Brennessel, C. J. Cramer, J. E. Ellis, P.
v. R. Schleyer, Science 2002, 295, 832-834.
J. Bai, A. V. Virovets, M. Scheer, Angew. Chem. Int. Ed.
2002, 41, 1737-1740.
Whereas the experimental and computational data for
[3]2– and [4]2– support the view of an aromatic [cyclo-P4]2–
dianion bound to a zero-valent metal fragment, it is important
to emphasize that the structural parameters of the cyclo-P4
units within complexes 1 and 2 also indicate the presence of
an aromatic [cyclo-P4]2– dianionic unit. This observation
suggests that, for this particular system, formal charge transfer
from the Mo center to the cyclo-P4 ligand in the neutral
complexes 1 and 2 is significant and Hückel-type aromaticity is
established. Accordingly, dianions [3]2– and [4]2–, which
represent an end-point in metal-based valence states, are best
contextualized for their capacity to benchmark electron
deficiency at the metal center, especially when the structural
and/or spectroscopic properties of the cyclo-P4 ligand indicate
aromatic character. Further illustrating this conclusion are the
metrical and spectroscopic parameters of the neutral,
[6]
[7]
[8]
[9]
[10] J. Bai, A. V. Virovets, M. Scheer, Science 2003, 300, 781-
783.
[11] H. Brake, E. Peresypkina, C. Heindl, A. V. Virovets, W.
Kremer, M. Scheer, Chem. Sci. 2019, 10, 2940-2944.
[12] O. J. Scherer, H. Sitzmann, G. Wolmershäuser, Angew.
Chem. Int. Ed. 1985, 24, 351-353.
[13] M. Fleischmann, D. Dielmann, L. J. Gregoriades, E. V.
Peresypkina, A. V. Virovets, S. Huber, A. Y. Timoshkin, G.
Balázs, M. Scheer, Angew. Chem. Int. Ed. 2015, 54, 13110-
13115.
[14] O. J. Scherer, J. Vondung, G. Wolmershäuser, Angew.
Chem. Int. Ed. 1989, 28, 1355-1357.
[15] M. E. Barr, S. K. Smith, B. Spencer, L. F. Dahl,
Organometallics 1991, 10, 3983-3991.
[16] M. Scheer, E. Herrmann, J. Sieler, M. Oehme, Angew.
Chem. Int. Ed. 1991, 30, 969-971.
[17] M. Scheer, U. Becker, J. C. Huffman, M. H. Chisholm, J.
Organomet. Chem. 1993, 461, C1-C3.
[18] M. Modl, S. Heinl, G.; Balázs, F. Delgado Calvo, M.
Caporali, G. Manca, M. Keilwerth, K. Meyer, M. Peruzzini,
M. Scheer, Chem. Eur. J. 2019, 25, 6300-6305.
[19] A. S. P. Frey, F. G. N.; Cloke, P. B. Hitchcock, J. C. Green,
New J. Chem. 2011, 35, 2022-2026.
[20] S. Yao, N. Lindenmaier, Y. Xiong, S. Inoue, T. Szilvási, M.
Adelhardt, J. Sutter, K. Meyer, M. Driess, Angew. Chem. Int.
Ed. 2015, 54, 1250-1254.
[21] S. Pelties, T. Maier, D. Herrmann, B. de Bruin, C.
Rebreyend, S. Gärtner, I. G. Shenderovich, R. Wolf, Chem.
Eur. J. 2017, 23, 6094-6102.
[22] F. Spitzer, C. Graßl, G. Balázs, E. Mädl, M. Keilwerth, E. M.
Zolnhofer, K. Meyer, Chem. Eur. J. 2017, 23, 2716-2721.
[23] Stephens, F. H., Ph.D. thesis, Massachusetts Institute of
Technology 2004.
[24] O. J. Scherer, R. Winter, G. Wolmershäuser, G Z. Anorg.
Chem. 1993, 619, 827-835.
[25] M. Herberhold, G.Frohmader, W, Milius, J. Organomet.
Chem. 1996, 522, 185-196.
[26] F. Dielmann, A.Timoshkin, M. Piesch, M. Scheer, Angew.
Chem. Int. Ed. 2017, 56, 1671-1675.
[27] A. Cavaillé, N. Saffon-Merceron, N. Nebra, M. Fustier-
Boutignon, N. Mézailles, Angew. Chem. Int. Ed. 2018, 57,
1874-1878.
paramagnetic cyclo-P4 complex, (h4-P4)MoI(CO)(CNArDipp2
)
2
(6), which was prepared according to the route shown in
Scheme 3 through the intermediacy of the salt [Cp2Co][(h4-
P4)MoI(CO)(CNArDipp2)2] ([Cp2Co][5]). Monoiodide 6 exhibits
average P-P bond distances that are similar to the other
mononuclear molybdenum cyclo-P4 complexes, thereby
signifying the presence of a [cyclo-P4]2– unit (Table 1; Figure
1). However, the Mo-(h4-P)centroid distance in 6 is shorter than
those for [K2(db18-c-6)][3] and K2[4], while its n(CN) and n(CO)
stretches are intermediate between those of complexes 1 and
2. These data indicate that complex 6 possesses an Mo center
in a higher-valent state than [K2(db18-c-6)][3], K2[4] and 2, but
not diiodide 1.
Accordingly, we believe this series represents a unique
case where metal-based valence modulation has been
identified for cyclo-P4 complexes featuring the same metal
center and a similar ancillary environment. Given that cyclo-P4
complexes are desirable initial products in the activation of
white phosphorus (P4) by transition-metal centers, the ability to
understand and benchmark metal-based redox changes within
these complexes may aid in the development of new
phosphorus-atom functionalization processes. We are
currently investigating this potential with the aim of developing
transformations for [K2(db18-c-6)][3] and K2[4] that
cooperatively involve redox equivalents from both the Mo
center and the cyclo-P4 ligand.
Acknowledgements
We are grateful to the U.S. National Science Foundation for
support of this work (CHE-1802646) and to the Alexander von
Humboldt Foundation for a Fellowship to J.S.F.
[28] K. A. Mandla, C. E. Moore, A. L Rheingold, J. S. Figueroa,
Angew. Chem. Int. Ed. 2018, 58, 1779-1783.
[29] U. Chakraborty, J. Leitl, B. Mühldorf, M. Bodensteiner, S.
Pelties, R. Wolf., Dalton Trans. 2018, 47, 3693-3697.
This article is protected by copyright. All rights reserved.