C O M M U N I C A T I O N S
reduced metal ion centers with O2 followed by •NO(g), compared to
conditions involving addition of peroxynitrite reagent to oxidized metal
ion centers. Further studies which address these issues and the
mechanism of the reaction observed here are in progress.
Acknowledgment. This work was supported by NIH Grant GM
60353 (K.D.K.).
Figure 2. Reaction of (thf)(F8)FeIII-(O2•-) (2) (ArF ) 2,6-difluorophenyl)
+ •NO(g) produces the nitrato complex (F8)FeIII-(NO3-) (3) (X-ray).17
Supporting Information Available: Details concerning synthesis,
spectroscopy, reactivity and CIF file. This material is available free of
containing 1 at -80 °C in the presence of DTBP and subsequent
warming yielded less than 2% of the NO2DTBP and no other products
besides the starting DTBP and the iron-nitrosyl (F8)FeII-(NO) (5);
excess •NO(g) is not solely responsible for significant DTBP nitration.
(iii) Warming 2 from -80 °C to RT in the presence of DTBP yielded
the oxidatively coupled phenol 3,3′,5,5′-tetra-tert-butyl-(1,1′-biphenyl)-
2,2′-diol (∼10%), unreacted DTBP (∼90%), and 4; •NO(g) is needed
for DTBP nitration. 4 is formed from thermal decomposition of 2.16a
(iv) Warming a -80 °C solution of (F8)FeIII-(NO3-) (3) in the presence
of DTBP gives no reaction of any kind; 3 itself will not nitrate DTBP.19
References
(1) (a) Marletta, M. A.; Hurshman, A. R.; Rusche, K. R. Curr. Opin. Chem.
Biol. 1998, 2, 656–663. (b) Crane, B. R. Biochem. Soc. Trans. 2008, 36,
1149–1154.
(2) (a) Ignarro, J. L.E. Nitric Oxide, Biology and Pathobiology; Academic Press:
San Diego, CA, 2000. (b) Moncada, S.; Palmer, R. M. J.; Higgs, E. A.
Pharmacol. ReV. 1991, 43, 109–142.
(3) (a) Denicola, A.; Radi, R. Toxicology 2005, 208, 273–288. (b) Beckman,
J. S.; Beckman, T. W.; Chen, J.; Marshall, P. A.; Freeman, B. A. Proc.
Natl. Acad. Sci. U.S.A. 1990, 87, 1620–1624. (c) Groves, J. T. Curr. Opin.
Chem. Biol. 1999, 3, 226–235. (d) Pacher, P.; Beckman, J. S.; Liaudet, L.
Physiol. ReV. 2007, 87, 315–424.
(4) (a) Radi, R. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 4003–4008. (b) Szabo´,
C.; Ischiropoulos, H.; Radi, R. Nature 2007, 6, 662–680. (c) Gunaydin,
H.; Houk, K. N. Chem. Res. Toxicol. 2009, 22, 894–898. (d) Beckman,
J. S. Chem. Res. Toxicol. 1996, 9, 836–844.
(5) Gardner, P. R.; Gardner, A. M.; Martin, L. A.; Salzman, A. L. Proc. Natl.
Acad. Sci. U.S.A. 1998, 95, 10378–10383.
Scheme 2
(6) (a) Ouellet, H.; Ouellet, Y.; Richard, C.; Labarre, M.; Wittenberg, B.;
Wittenberg, J.; Guertin, M. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 5902–
5907. (b) Gardner, P. R. J. Inorg. Biochem. 2005, 99, 247–266.
(7) Gardner, P. R.; Gardner, A. M.; Brashear, W. T.; Suzuki, T.; Hvitved, A. N.;
Setchell, K. D. R.; Olson, J. S. J. Inorg. Biochem. 2006, 100, 542–550.
(8) Olson, J. S.; Foley, E. W.; Rogge, C.; Tsai, A.-H.; Doyle, M. P.; Lemon,
D. D. Free Radical Biol. Med. 2004, 36, 685–697.
(9) Yukl, E. T.; de Vries, S.; Moënne-Loccoz, P. J. Am. Chem. Soc. 2009,
131, 7234–7235.
(10) (a) Herold, S.; Koppenol, W. H. Coord. Chem. ReV. 2005, 249, 499–506.
(b) Blomberg, L. M.; Blomberg, M. R. A.; Siegbahn, P. E. M. J. Biol.
Inorg. Chem. 2004, 9, 923–935. (c) Ford, P. C.; Lorkovic, I. M. Chem.
ReV. 2002, 102, 993–1017.
(11) Computational chemistry indicates that peroxynitrous acid (HOONdO)
decomposition to nitrate involves the “caged radical pair” (HO•) (•NO2).
See: Gunaydin, H.; Houk, K. N. J. Am. Chem. Soc. 2008, 130, 10036.
(12) Protein heme-NO species also react with O2, leading to nitrate. The
mechanism is said to require NO dissociation, ligation of O2 to form the
oxy species, and its subsequent reaction with NO as in Scheme 1. See:
Herold, S.; Röck, G. Biochemistry 2005, 44, 6223–6231, and refs 10a,c.
From such a reaction involving Mb(NO), a visible spectrum of a putative
peroxynitrite intermediate was extracted; see: Møller, J. K. S.; Skibsted,
L. H. Chem. Eur. J. 2004, 10, 2291–2300.
As previously mentioned, these studies implicate a heme-peroxy-
nitrite intermediate (F8)FeIII-(-OONdO) (2a), formed from (thf)(F8)FeIII-
(O2•-) (2) (no excess O2 present) plus 1 equiv of •NO(g). Following
the literature suggestions, we can hypothesize that 2a undergoes
homolysis to give a ferryl + •NO2 (2b) (caged?), which however can
be captured by a phenol which is already present in solution (Scheme
2). The ferryl would oxidize the phenol to a phenoxyl radical which
will react with •NO2 to give the nitrophenol. The very stable heme-
FeIII-hydroxo complex 4 is formed by the wayside, as we observe.
Another reaction mechanism that should be considered is that
(F8)FeIII-(-OONdO) (2a) undergoes heterolytic OsO bond cleavage,
producing nitronium (NO2+) ion which is an effective phenol nitrating
agent.20 Generation of NO2+ in reactions of copper-zinc superoxide
dismutase (CuZnSOD) with peroxynitrite was in fact suggested by
Beckman,21 and other literature reports suggest this chemistry may
be preferred when metal ions are present.4c,20 However, for metal-
loporphyrins, OsO heterolytic cleavage to give NO2+ seems to have
been ruled out or not considered.22
In summary, we have here described a heme complex that acts as
a nitrogen monoxide dioxygenase, facilitating the reaction of O2 and
•NO to yield the nitrate anion NO3-. Generation of a heme-
peroxynitrite species is implicated; it can be trapped by a phenolic
substrate, leading to o-nitration. The results lead to the suggestion that
in heme proteins peroxynitrite may leak and effect nitration of nearby
residues or exogenous substrates. While Herold observed essentially
no peroxynitrite leakage in oxyMb reactions with •NO,13 other studies
show that addition of peroxynitrite to various metal complexes and
metalloproteins leads to protein tyrosine (including for Mb) or
exogenous phenol nitration.23 Other examples include MnSOD and
CuZnSOD.3d,24 Perhaps there are subtle differences in reactions of
(13) Herold, S.; Exner, M.; Nauser, T. Biochemistry 2001, 40, 3385–3395.
(14) Goldstein, S.; Merenyi, G.; Samuni, A. J. Am. Chem. Soc. 2004, 126,
15694–15701.
(15) Heme-NO complexes may react with O2 to give (heme)FeIII-nitrates; for exam-
ple, see:Munro, O. Q.; Scheidt, W. R. Inorg. Chem. 1998, 37, 2308–2316.
(16) (a) Ghiladi, R. A.; Kretzer, R. M.; Guzei, I.; Rheingold, A. L.; Neuhold,
Y.-M.; Hatwell, K. R.; Zuberbühler, A. D.; Karlin, K. D. Inorg. Chem.
2001, 40, 5754–5767. (b) Kim, E.; Helton, M. E.; Wasser, I. M.; Karlin,
K. D.; Lu, S.; Huang, H.-W.; Moënne-Loccoz, P.; Incarvito, C. D.;
Rheingold, A. L.; Honecker, M.; Kaderli, S.; Zuberbühler, A. D. Proc.
Natl. Acad. Sci. U.S.A. 2003, 100, 3623–3628.
(17) For comprison of properties, a separately synthesized nitrate complex (3)
was generated via the reaction, (F8)FeIII-(Cl) + AgNO3 f (3).18
(18) See Supporting Information.
(19) DTBP in a metal-complex free solution bubbled with excess O2(g) and •NO(g)
yielded a 50/50 mixture of NO2DTBP and a dinitrated product, 2-tert-
butyl-4,6-dinitrophenol. Free •NO2 which might derive from 2 + •NO(g)
chemistry is cabable of effecting phenol nitration, but since production of
only one •NO2 per heme complex is possible, the yield of NO2DTBP would
then be less than 50%, not as observed.
(20) (a) Reynolds, M. R.; Berry, R. W.; Binder, L. I. Biochemistry 2007, 46,
7325–7336. (b) van der Vliet, A.; Eiserich, J. P.; O’Neill, C. A.; Halliwell,
B.; Cross, C. E. Arch. Biochem. Biophys. 1995, 319, 341–349.
(21) Ischiropoulos, H.; Zhu, L.; Chen, J.; Tsai, M.; Martin, J. C.; Smith, C. D.;
Beckman, J. S. Arch. Biochem. Biophys. 1992, 298, 431–437.
(22) Lee, J.; Hunt, J. A.; Groves, J. T. J. Am. Chem. Soc. 1998, 120, 6053–6061.
(23) (a) Bourassa, J. L.; Ives, E. P.; Marqueling, A. L.; Shimanovich, R.; Groves,
J. T. J. Am. Chem. Soc. 2001, 123, 5142–5143. (b) Crow, J. P. Arch.
Biochem. Biophys. 1999, 371, 41–52.
(24) Demicheli, V.; Quijano, C.; Alvarez, B.; Radi, R. Free Radical Biol. Med.
2007, 42, 1359–1368. (b) Quint, P.; Reutzel, R.; Mikulski, R.; McKenna,
R.; Silverman, D. N. Free Radical Biol. Med. 2006, 40, 453–458.
JA904832J
9
J. AM. CHEM. SOC. VOL. 131, NO. 32, 2009 11305