Page 3 of 3
ChemComm
The necessity of the PdNP as the catalyst and water as the
Notes and references
reaction medium suggest specific role played by the PdNP and
water in epoxide phenolysis. The PdNP activates the epoxide
ring through coordination with one of the lone pair of
electrons of the epoxide ring oxygen.11 The rate enhancement
of organic reaction in water has been popularly attributed to
the hydrogen bonding (HB) effect.12 The water molecule
further activates the epoxide through HB formation13 with the
second lone pair of electrons of the epoxide ring oxygen. The
55 aDepartment of Medicinal Chemistry, National Institute of
Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S.
† Electronic Supplementary Information (ESI) available: Spectroscopic
60 data of all compounds, scanned spectra of new compounds. See
DOI: 10.1039/b000000x/
5
1
(a) B. Das, M. Krishnaiah, P. Thirupathi and K. Laxminarayana,
Tetrahedron Lett., 2007, 48, 4263; (b) M. A. Brimble, Y.-C.
(William) Liu and M. Trzoss, Synthesis, 2007, 1392; (c) K. Surendra,
N. S. Krishnaveni, Y. V. D. Nageswar and K. Rama Rao, J. Org.
Chem., 2003, 68, 4994; (d) Epoxide phenolysis catalysed by
polystyrene-supported strong base requires prolonged reaction time
(A. Zvagulis, S. Bonollo, D. Lanari, F. Pizzo and L. Vaccaro, Adv.
Synth. Catal., 2010, 352, 2489).
10 oxygen atom of the water molecule in turn forms HB with the
OH of the phenol and induces nucleophilic activation14 and
brings the phenolic oxygen in close proximity to the activated
65
epoxide ring for nucleophilic attack.
A charge transfer
interaction between the electron rich PdNP and the aromatic
15 ring of the phenol15 provides rigidity to the transition state I
(Scheme 2). Thus, the PdNP and water constitute a synergistic
dual activation model for simultaneous activation of the
epoxide and the phenol to promote the epoxide phenolysis.
70 2 S. Matsunaga, J. Das, J. Roels, E. M. Vogl, N. Yamamoto, T. Iida, K.
Yamaguchi and M. Shibasaki, J. Am. Chem. Soc., 2000, 122, 2252.
3
(a) D. N. Annis and E. N. Jacobsen, J. Am. Chem. Soc., 1999, 121,
4147; (b) Extension of the similar strategy using porphyrin-based
ligand reports GC-based conversion (K. Venkatasubbaiah, X. Zhu, E.
Kays, K. I. Hardcastle and C. W. Jones, ACS Catal., 2011, 1, 489).
J. Xu, A. R. Wilson, A. R. Rathmell, J. Howe, M. Chi and B. J.
Wiley, ACS Nano, 2011, 5, 6119.
75
80
4
5
6
See supporting information.
(a) D. Astruc, F. Lu and J. R. Aranzaes, Angew. Chem. Int. Ed., 2005,
44, 7852; (b) A. Roucoux, J. Schultz and H. Patin, Chem. Rev., 2002,
102, 3757.
20
Scheme 2. Synergistic epoxide-phenol dual activation by PdNP and
7
(a) R. E. Huie, C. L. Clifton and P. Neta, Radiat. Phys. Chem., 1991,
38, 477; (b) B. G. Ershov, E. Janata, M. Michaelis and A. Henglein,
J. Phys. Chem., 1991, 95, 8996.
water.
The poor nucleophilicity of the phenolic hydroxyl group
requires assistance by Lewis/Brönsted acids to activate the
electrophile (leaving group) that results in C-C bond
85 8 W. Han, C. Liu and Z. Jin, Adv. Synth. Catal., 2008, 350, 501.
9
M. Tokunga, J. F. Larrow, F. Kakiuchi and E. N. Jacobsen, Science,
1997, 277, 936.
25 formation through the para-position of the phenolic moiety.16
No C-C bond formation between the phenol and the epoxide
moiety takes place and signifies the involvement of the
hydrogen-bonded structure I as it would direct C-O bond
formation involving the phenolic OH group and the epoxide
30 ring and would not facilitate any C-C bond formation with the
phenolic moiety. The lesser reaction time required for phenols
with electron withdrawing group is due to their better HB
donor ability as well as better electronic charge acceptor
ability (through the anionic-π interaction with the electron
35 rich PdNP) in forming a more rigid transition state I. The
implication of HB involving the phenolic OH group is realised
by the fact that no epoxide alcoholysis took place in replacing
the phenol separately by MeOH, EtOH, and benzyl alcohol.
The 83:17 selectivity towards the epoxide phenolysis product
40 of 1a with 4-nitrophenol during the treatment of 1a with
equimolar mixture of 4-methoxyphenol and 4-nitrophenol
provided further evidence for the involvement of hydrogen
bond of the phenolic OH group in the transition state (Scheme
2).5
10 (a) B. Pujala, S. Rana and A. K. Chakraborti, J. Org. Chem., 2011,
76, 8768; (b) Shivani, B. Pujala and A. K. Chakraborti, J. Org.
Chem., 2007, 72, 3713; (c) Shivani and A. K. Chakraborti, J. Mol.
Catal. A: Chem., 2007, 263, 137; (d) A. K. Chakraborti, A.
Kondaskar and S. Rudrawar, Tetrahedron, 2004, 60, 9085; (e) A. K.
Chakraborti, S. Rudrawar and A. Kondaskar, Eur. J. Org. Chem.,
2004, 3597; (f) A. K. Chakraborti, S. Rudrawar and A. Kondaskar,
Org. Biomol. Chem., 2004, 2, 1277; (g) A. K. Chakraborti and A.
Kondaskar, Tetrahedron Lett., 2003, 44, 8315.
11 The AgNPs activate sulfur in organosulfur compounds [W. Gan, B.
Xu and H.-L. Dai, Angew. Chem. Int. Ed., 2011, 50, 6622].
12 (a) Y. Zheng and J. Zhang, ChemPhysChem, 2010, 11, 65; (b) Jung,
Y. and R. A. Marcus, J. Am. Chem. Soc., 2007, 129, 5492.
90
95
100
13 (a) D. N. Kommi, D. Kumar, K. Seth and A. K. Chakraborti, Org.
Lett., 2013, 15, 1158; (b) D. N. Kommi, D. Kumar and A. K.
Chakraborti, Green Chem., 2013, 15, 756; (c) I. Viotijevic and T. F.
Jamison, Science, 2007, 317, 1189.
105 14 HB-assisted dual activation by water for other organic reactions [(a)
D. N. Kommi, P. S. Jadhavar, D. Kumar and A. K. Chakraborti,
Green Chem., 2013, 15, 798; (b) D. N. Kommi, D. Kumar, R. Bansal,
R. Chebolu and A. K. Chakraborti, Green Chem., 2012, 14, 3329; (c)
E. Vohringer-Martinez, B. Hansmann, H. Hernandez, J. S. Francisco,
110
J. Troe and B. Abel, Science, 2007, 315, 497; (d) S. V. Chankeshwara
and A. K. Chakraborti, Org. Lett., 2006, 8, 3259; (e) G. L. Khatik, R.
Kumar and A. K. Chakraborti, Org. Lett., 2006, 8, 2433; (f) A. K.
Chakraborti, S. Rudrawar, K. B. Jadhav, G. Kaur and S. V.
Chankeshwara, Green Chem., 2007, 9, 1335].
45
In conclusions, a new model for epoxide-phenol dual
activation through the synergistic action of PdNP and water
has been devised to provide an efficient protocol for epoxide
phenolysis that finds application for the synthesis of drug
molecules. This work represents the first example of metal
115 15 Cation-π interactions between aromatic molecules and NP surface-
bound Au+ [A. Kumar, S. Mandal, S. P. Mathew, P. R. Selvakannan,
A. B. Mandale, R. V. Chaudhari and M. Sastry, Langmuir, 2002, 18,
6478].
50 NP-catalysed epoxide ring activation.
16 (a) C. Piemontesi, Q. Wang and J. Zhu, Org. Biomol. Chem., 2013,
The authors K. S. and S. R. R. thank CSIR (New Delhi) for
senior research fellowships and B. V. P. thanks UGC (New
Delhi) for junior research fellowship.
120
11, 1533; (b) B. Alcaide, P. Almendros, M. T. Quirós; R. López, M.
I. Menéndez and A. Sochacka-Ćwikła, J. Am. Chem. Soc., 2013, 135,
898; (c) F. Zhou, Z.-Y. Cao, J. Zhang, H.-B. Yang and J. Zhou,Chem.
Asian J., 2012, 7, 233.
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3