Photodecarbonylation of Crystalline Diarylcyclopropenones
A R T I C L E S
Scheme 2
state reactant or product undergoes thermal or radiative decay
(Step 4 and/or Step 5).
As recently suggested by Gillmore et al., quantum amplified
reactions with long propagation lengths would be ideal for the
amplification of photonic signals, with potential in lithographic
and sensing applications.6 Most signal amplification strategies
developed to date deal with the optimal capture and use of every
photon absorbed, as exemplified by Swager’s molecular wire
approach7 and several related strategies.8 In contrast, quantum
chain reactions generate more than one chemical event per
photon, and harnessing their potential would be highly desirable.
Recent examples of quantum chain processes in materials
science include the use of polymeric materials undergoing
changes in refractive index as a result of radical ion chains,6
super-high-spin magnetic polycarbenes,8h or triplet quantum
chain9 reactions of Dewar benzene to Hu¨ckel benzene.
Despite their promising nature, the control of quantum chain
reactions represents a significant challenge, especially as it
pertains to the propagation events in Scheme 1. Limitations arise
from the relatively small number of adiabatic reactions devel-
oped at this time (Step 2) and from the challenges involved in
designing an efficient energy-transfer process (Step 3). If one
considers reactions that occur in solution, long chain reactions
will require excited states with long lifetimes and high reactant
concentrations. It is therefore not surprising that almost all
known quantum chain reactions occur in triplet states. Examples
include cis-trans isomerization of alkenes and polyenes,4,10,11
decomposition of dioxetanes to ground- and excited-state
ketones,12,13 and several bond-valence isomerizations.5,9,14 In
fact, singlet-state quantum chains are severely limited by the
short excited-state lifetimes, which make energy transfer by
diffusion mechanisms very unlikely. Adiabatic reactions that
take place in the singlet state have been established by detecting
the fluorescence15 or transient absorption of the excited pho-
toproduct rather than by observation of a quantum chain with
quantum yields of product formation that are greater than 1. It
should be noted that some adiabatic reactions, such as the
fragmentation of dioxetanes and the bond-valence isomerization
of Dewar naphthalene, may take place along both the singlet
and triple manifolds. Other reactions have been reported to occur
specifically along the singlet or triplet state.5
Recognizing that energy transfer in crystalline solids may take
place on a sub-picosecond time scale,16 we recently proposed
that crystalline solids should be ideal candidates for quantum
chain processes, increasing the efficiency of Step 3 in Scheme
1. It seems reasonable that ultrafast energy transfer will make
quantum chains possible even for the shortest-lived singlet states.
On the basis of our recent experience with the photodecarbo-
nylation of crystalline ketones17 and reports of an adiabatic
photodecarbonylation of diphenylcyclopropenone (DPCP) to
diphenylacetylene (DPA),18 we decided to investigate this
reaction as a possible test system.19 As discussed below, an
adiabatic reaction along an upper excited singlet state represents
one of the most challenging systems for quantum chains, which
can set the stage for rapid future progress.
(6) Gillmore, J. G.; Neiser, J. D.; McManus, K. A.; Roh, Y.; Dombrowski,
G. W.; Brown, T. G.; Dinnocenzo, J. P.; Farid, S.; Robello, D. R.
Macromolcules 2005, 38, 7684–7694.
(7) Swager, T. M. Acc. Chem. Res. 1998, 31, 201.
(8) Photon capture and transport by conjugated polymers has been applied
in many different contexts. (a) Swager, T. M. Acc. Chem. Res. 2008,
41, 1181. (b) Mitrovics, J.; Ulmer, H.; Weimar, U.; Go¨pel, W. Acc.
Chem. Res. 1998, 31, 307. (c) Albert, K. J.; Lewis, N. S.; Schauer,
C. L.; Sotzing, G. A.; Stitzel, S. E.; Vaid, T. P.; Walt, D. R. Chem.
ReV. 2000, 100, 2595. (d) Vetrichelvan, M.; Nagarajan, R.; Valiyaveet-
til, S. Macromolecules 2006, 39, 8303. (e) Liu, Y.; Mills, R. C.;
Boncella, J. M.; Schanze, K. S. Langmuir 2001, 17, 7452. (f) Hong,
J. W.; Gaylord, B. S.; Bazan, G. C. J. Am. Chem. Soc. 2002, 124,
11868. (g) Jones, R. M.; Bergstedt, T. S.; McBranch, D. W.; Whitten,
D. G. J. Am. Chem. Soc. 2001, 123, 6726. (h) Matsuda, K.; Nakamura,
N.; Takahashi, K.; Inoue, K.; Koga, N.; Iwamura, H. J. Am. Chem.
Soc. 1995, 117, 5550.
Transient absorption studies in solution, starting in the early
1990s by Hirata et al.,18c suggested an adiabatic reaction from
the second excited state, S2-DPCP, which has been recently
estimated to occur with a time constant of ca. 200 fs, as
illustrated in Scheme 2.18a While there has been some debate
(15) (a) Carr, R. V.; Kim, B.; McVey, J. K.; Yang, N. C.; Gerhartz, W.;
Michl, J. Chem. Phys. Lett. 1976, 39, 57. (b) Yang, N. C.; Carr, R. V.;
Li, E.; McVey Rice, J. Chem. Phys. Lett. 1976, 39, 57.
(9) (a) Merkel, P. B.; Roh, Y.; Dinnocenzo, J. P.; Robellow, D. R.; Farid,
S. J. Phys. Chem. A 2007, 111, 1188. (b) Ferrar, L.; Mis, M.;
Dinnocenzo, J. P.; Fardid, S.; Merkel, P. B.; Robello, D. R. J. Org.
Chem. 2008, 73, 5683.
(16) (a) Powel, R. C; Soos, A. G. J. Lumin. 1975, 11, 1. (b) Swenberg,
C. E.; Gaecintov, N. E. In Organic Molecular Photophysics; Birks,
J. B. Ed.; John Wiley and Sons: London, 1973. (c) Yoon, Z. S.; Yoon,
M.-C.; Kim, D. J. Photochem. Photobiol. C 2005, 6, 249. (d) Ahrens,
M. J.; Sinks, L. E.; Rybtchinski, B.; Liu, W.; Jones, B. A.; Giaimo,
J. M.; Gusev, A. V.; Goshe, A. J.; Tiede, D. M.; Wasielewski, M. R.
J. Am. Chem. Soc. 2004, 126, 8284.
(10) (a) Saltiel, J.; Dmitrenko, O.; Pillai, Z. S.; Klima, R.; Wang, S.;
Wharton, T.; Huang, Z.-N.; van de Burgt, L. J.; Arranz, J. Photochem.
Photobiol. Sci. 2008, 7, 566. (b) Saltiel, J.; Dmitrenko, O.; Reischl,
W.; Bach, R. D. J. Phys. Chem. A 2001, 105, 3934. (c) Saltiel, J.;
Wang, S.; Ko, D.-H.; Groming, D. A. J. Phys. Chem. A 1998, 102,
5383. (d) Saltiel, J.; Townsend, D. E.; Skyes, A. J. Am. Chem. Soc.
1973, 95, 5968.
(17) (a) Campos, L. M.; Garcia-Garibay, M. A. In ReViews of ReactiVe
Intermediate Chemistry; Platz, M. S., Jones, M., Moss, R., Eds.; Wiley-
Interscience: Hoboken, NJ, 2007. (b) Mortko, C. J.; Garcia-Garibay,
M. A. Top. Stereochem. 2006, 25, 205–253. (c) Garcia-Garibay, M. A.;
Campos, L. In The Handbook for Organic Photochemistry and
Photobiology; Horspool, W., Ed.; CRC Press: Boca Raton, FL, 2003.
(18) (a) Takeuchi, S.; Tahara, T. J. Chem. Phys. 2004, 120, 4768. (b)
Terazima, M.; Hara, T.; Hirota, N. Chem. Phys. Lett. 1995, 246, 577.
(c) Hirata, Y.; Okada, T.; Mataga, N.; Nomoto, T. J. Phys. Chem.
1992, 193, 287.
(11) (a) Karatus, T.; Tsuchiya, M.; Arai, T.; Sakuragi, H.; S.; Tokumaru,
K. Bull. Chem. Soc. Jpn. 1994, 67, 3030. (b) Mo¨llerstedt, H.;
Wennerstro¨m, O. J. Photochem. Photobiol. A 2001, 139, 37.
(12) Turro, N. J.; Waddell, W. H. Tetrahedron Lett. 1975, 25, 2069.
(13) (a) Zharinova, E. V.; Voloshin, A. I.; Kazakov, V. P. J. Mol. Liq.
2001, 91, 237–243. (b) Kazakov, V. P.; Voloshin, A. I.; Shavaleev,
N. M. J. Photochem. Photobiol. A 1998, 119, 177.
(14) (a) Turro, N. J.; Ramamurthy, V.; Katz, T. J. NouV. J. Chim. 1977, 1,
363. (b) Lechtken, P.; Yekta, A.; Shore, N. E.; Steinmetzer, H. C.;
Waddell, W. H.; Turro, N. J. Z. Phys. Chem. 1976, 101, 79.
(19) Kuzmanich, G.; Natarajan, A.; Chin, K.; Veerman, M.; Mortko, C.;
Garcia-Garibay, M. A. J. Am. Chem. Soc. 2008, 130, 1140.
9
J. AM. CHEM. SOC. VOL. 131, NO. 32, 2009 11607