was not very high, while the diastereoselectivity of the second
aldol process was excellent. Since the treatment under proline-type
catalysis of rac-4 and (-)-4 gave the starting material unchanged,
we can conclude that the reverse aldolisation was not operative
in these reaction conditions. Thus, the observed enantioselectivity
was determined by an irreversible kinetically-controlled step in
which the ketone acts as a nucleophile (Scheme 2). Additionally,
it is worth mentioning that water plays an effective role in the
process,23 probably with a favourable hydrophilic interaction in
the transition state leading to (-)-4 (compare entries 1 and 2 in
Table 2).
8 (a) J. Quirante, M. Torra, F. Diaba, C. Escolano and J. Bonjoch,
Tetrahedron: Asymmetry, 1999, 10, 2399–2410; (b) G. Karig, A. Fuchs,
A. Bu¨sing, T. Brandstetter, S. Scherer, J. W. Bats, A. Eschenmoser and
G. Quinkert, Helv. Chim. Acta, 2000, 83, 1049–1078; (c) J. Quirante, F.
Diaba, X. Vila, J. Bonjoch, E. Lago and E. Molins, C. R. Acad. Sci,
2001, 4, 513–521; (d) M. Amat, M. Pe´rez, A. T. Minaglia and J. Bosch,
J. Org. Chem., 2008, 73, 6920–6923.
9 For some reviews about asymmetric aminocatalysis of aldol processes,
see: (a) C. Allemann, R. Gordillo, F. R. Clemente, P. H.-Y. Cheong
and K. N. Houk, Acc. Chem. Res., 2004, 37, 558–569; (b) G. Guillena,
C. Na´jera and D. J. Ramon, Tetrahedron: Asymmetry, 2007, 18, 2249–
2293; (c) C. F. Barbas III, Angew. Chem., Int. Ed., 2008, 47, 42–47; (d) P.
Melchiorre, M. Marigo, A. Carlone and G. Bartoli, Angew. Chem., Int.
Ed., 2008, 47, 6138–6171.
10 Apart from the studies in the Wieland–Miescher ketone and analogs
synthesis,11 few examples of asymmetric intramolecular aldol processes
using organocatalysis have been reported12.
In summary, we have described the first nitrogen-containing
ring synthesis by means of an asymmetric aldol reaction us-
ing organocatalysis. The desymmetrisation of a prochiral 4-
N-protected aminocyclohexanone24 through its intramolecular
aldolisation, as reported here, still has some outstanding enan-
tioselectivity issues to be resolved. With the aim of improving the
enantioselectivity of the process and applying it to natural product
synthesis, studies with additional chiral amines are ongoing.
11 (a) T. Bui and C. F. Barbas III, Tetrahedron Lett., 2000, 41, 6951–6954;
(b) B. List, L. Hoang and H. J. Martin, Proc. Natl. Acad. Sci. U. S.
A., 2004, 101, 5839–5842 and references therein; (c) S. G. Davies, A.
J. Russell, R. L. Sheppard, A. D. Smith and J. E. Thompson, Org.
Biomol. Chem., 2007, 3190–3200; (d) D. B. Ramachary and M. Kishor,
J. Org. Chem., 2007, 72, 5056–5068; (e) T. Kanger, K. Kriis, M. Laars, T.
Kailas, A.-M. Mu¨u¨risepp, T. Pehk and M. Lopp, J. Org. Chem., 2007,
72, 5168–5173; (f) G. Guillena, C. Na´jera and S. F. Vio´zquez, Synlett,
2008, 3031–3035.
12 (a) C. Pidathala, L. Hoang, N. Vignola and B. List, Angew. Chem.,
Int. Ed., 2003, 42, 2785–2788; (b) N. Itagaki, M. Kimura, T. Sugahara
and Y. Y. Iwabuchi, Org. Lett., 2005, 7, 4185–4188; (c) Y. Hayashi, H.
Sekizawa, J. Yamaguchi and H. Gotoh, J. Org. Chem., 2007, 72, 6493–
6499; (d) J. Zhou, V. Wackchaure, P. Kraft and B. List, Angew. Chem.,
Int. Ed., 2008, 47, 7656–7658.
13 For racemic compounds, see: (a) J.-H. Maeng and R. L. Funk, Org.
Lett., 2001, 3, 1125–1128; (b) T. Kan, T. Fujimoto, S. Ieda, Y. Asoh, H.
Kitaoka and T. Fukuyama, Org. Lett., 2004, 6, 2729–2731.
14 For enantiopure compounds by diastereoselective processes, see: (a) B.
B. Snider and H. Lin, J. Am. Chem. Soc., 1999, 121, 7778–7786; (b) G.
Scheffler, H. Seike and E. J. Sorensen, Angew. Chem., Int. Ed., 2000,
39, 4593–4596; (c) M. Ousmer, N. A. Braun, C. Bavoux, M. Perin and
M. A. Ciufolini, J. Am. Chem. Soc., 2001, 123, 7534–7538; (d) S. Kaden
and H.-U. Reissig, Org. Lett., 2006, 8, 4763–4766.
15 S. Patir, P. Rosenmund and P. H. Goetz, Heterocycles, 1996, 43, 15–22.
16 For N-dealkylations of aminoacetaldehyde derivatives, see: D. Sole´, J.
Bosch and J. Bonjoch, Tetrahedron, 1996, 52, 4013–4028 and references
therein.
17 For the use of a protected aminoacetaldehyde in organocatalytic
asymmetric intermolecular aldol reactions, see: R. Thayumanavan, F.
Tanaka and C. F. Barbas III, Org. Lett., 2004, 6, 3541–3544.
18 A search in SciFinder reveals that the structure of 4-(2-
oxoethyl)aminocyclohexanone (1) has not been reported for any N-
substituent-type.
19 Y. Hayashi, Angew. Chem., Int. Ed., 2006, 45, 8103–8104.
20 The influence of the protecting group on the nitrogen atom was
unexplored. In any case, the use of a phthalimido protecting group,
which was the key in Barbas’ work (ref. 17), is structurally impossible
in the synthesis of nitrogen-containing rings.
21 For some organocatalyzed asymmetric reactions via microwave acti-
vation: (a) B. Westermann and C. Neuhaus, Angew. Chem., Int. Ed.,
2005, 44, 4077–4079; (b) B. Rodr´ıguez and C. Bolm, J. Org. Chem.,
2006, 71, 2888–2891; (c) S. Mosse´ and A. Alexakis, Org. Lett., 2006, 8,
3577–3580; (d) M. Hosseini, N. Stiasni, V. Barbieri and C. O. Kappe,
J. Org. Chem., 2007, 72, 1417–1424.
Acknowledgements
This research was supported by the Ministerio de Ciencia e Inno-
vacio´n (Spain)-FEDER through project CTQ2007-61338/BQU.
Thanks are also due to the Comissionat per a Universitats i
Recerca (Catalonia) for Grant 2005SGR-00042.
Notes and references
‡ Reaction procedure: in a 10 mL vessel were placed keto aldehyde 1
(100 mg, 0.47 mmol), catalyst C (43 mg, 0.12 mmol, 25%), acetonitrile
(1 mL) and water (0.08 mL, 4.7 mmol). The mixture was heated
with stirring to 100 ◦C using microwave irradiation for 15 min. After
concentration, the reaction mixture was purified by chromatography
(dichloromethane/ethyl acetate 1:1) to give 4 (70 mg, 70%) as a viscous
colourless oil: HPLC (Daicel Chiralpak IC, dichloromethane/methanol
99:1, 1 mL min-1, l = 290 nm; major isomer t = 8.48 min; minor isomer
9.63 min); IR (NaCl, neat): 3413, 1698 cm-1; 1H NMR (CDCl3, 400 MHz,
gCOSY) 1.90–2.24 (m, 4H), 2.46 (dt, 1H, J = 18, 8.4 Hz, H-7ax), 2.59
(ddd, 1H, J = 18, 9.2, 4.8 Hz, H-7eq), 2.82 (br s, 1H, H-5), 2.89 (t, 1H,
J = 12.4 Hz, H-3ax), 3.24 and 3.27 (2d, 1H, J = 5.6 Hz, OH), 3.73 (s, 3H,
CH3), 3.98 (br s, 1H, H-4), 4.23 and 4.37 (2dd, 1H, J = 13.2, 6 Hz, H-3eq),
4.45 and 4.61 (2brs, 1H, H-1); 13C NMR (CDCl3, 100 MHz, gHSQC) 27.7
and 28.6 (C-9), 29.4 and 29.9 (C-8), 38.3 (C-7), 43.4 and 43.7 (C-1), 45.9
and 46.1 (C-3), 49.4 (C-5), 52.8 (CH3), 67.4 and 67.7 (C-4), 156.0 (CO),
212.3 and 213.2 (C-6). HRMS (ESI-TOF) Calcd for C10H16NO4: 214.1073
(M + H+), Found 214.1074.
1 (a) J. Bonjoch and F. Diaba, Studies in Natural Products Chemistry,
2005, 32, 3–60; (b) C. A. Carson and M. A. Kerr, Org. Lett., 2009, 11,
777–779 and references therein.
2 G. M. Staub, J. B. Gloer, D. T. Wicklow and P. F. Dowd, J. Am. Chem.
Soc., 1992, 114, 1015–1017.
3 J. Quirante, L. Paloma, F. Diaba, X. Vila and J. Bonjoch, J. Org. Chem.,
2008, 73, 768–771 and references therein.
22 (a) I. Chataigner, J. Lebreton, D. Durand, A. Guingant and J. Villie´ras,
Tetrahedron Lett., 1998, 39, 1759–1762; (b) J. M. Seco, E. Quin˜oa´ and
R. Riguera, Chem. Rev., 2004, 104, 17–117.
23 For a review about water in stereoselective organocatalytic reactions,
see: M. Gruttadauria, F. Giacalone and R. Notoa, Adv. Synth. Catal.,
2009, 351, 33–57.
24 The only precedent of a 4-aminocyclohexanone asymmetric desym-
metrization is upon the N(Boc)2 derivative and using Simpkins’ base:
V. K. Aggarwal and B. Olofsson, Angew. Chem., Int. Ed., 2005, 44,
5516–5519.
4 C. S. Schindler, C. R. J. Stephenson and E. M. Carreira, Angew. Chem.,
Int. Ed., 2008, 47, 8852–8855.
5 (a) J. Zezula and T. Hudlicky, Synlett, 2005, 388–405; (b) H. Tanimoto,
R. Saito and N. Chida, Tetrahedron Lett., 2008, 49, 358–361 and
references therein.
6 (a) J. Bonjoch and D. Sole´, Chem. Rev., 2000, 100, 3455–3482; (b) J.
Boonsombat, H. Zhang, M. J. Chughtai, J. Hartung and A. Padwa, J.
Org. Chem., 2008, 73, 3539–3550 and references therein.
7 D. Sole´, X. Urbaneja and J. Bonjoch, Org. Lett., 2005, 7, 5461–5464
and references therein.
This journal is
The Royal Society of Chemistry 2009
Org. Biomol. Chem., 2009, 7, 2517–2519 | 2519
©