J . Org. Chem. 1998, 63, 6065-6067
6065
resorcinarenes should embody ideal scaffolds for polyaro-
matic cavity enlargement without loss of structure. The
functionalization of the resorcinarene lower rim has
begun to attract attention as a means of enhancing the
properties of the parent macrocycles,6 but there is only
one example describing conjugation extension of the
lower rim.6a We previously reported the synthesis of a
new series of resorcinarenes embodying boronic acid
substituents.7 Herein, we detail the first direct, 4-fold
conjugation extension of the resorcinarene lower rim
employing Suzuki couplings featuring both octol and
cavitand macrocyclic substrates, including convenient,
nonchromatographic product isolation. Importantly, the
macrocycle conformation is preserved upon lower cavity
extension, resulting in the creation of a deepened, pol-
yaromatic lower rim cleft.
Suzuki coupling reactions have several advantages
over related methodologies, including tolerance of a wide
range of functionalities and relatively low toxicity.8 Two
resorcinarene substrates were chosen as Suzuki coupling
partners (Figure 1). Compound 1 is synthesized in 72.4%
yield via addition of a solution of the known precursor
octol tetrabromide6a (5.00 g, 4.51 mmol), DMF (150 mL),
and MeOH (10 mL) to a solution of K2CO3 (6.23 g, 45.1
mmol), DMF (100 mL), and CH2BrCl (1.32 mL, 20.3
mmol) over the course of 30 h. The temperature is
gradually increased from room temperature to 65 °C over
7 days, during which an additional 2 portions of CH2-
BrCl (1.32 mL, 20.3 mmol) is added. We observed that
methanolimproved the efficiencyofthe bridgingreaction,6d,9
presumably by aiding substrate solubility.
Resor cin a r en es w ith Deep en ed
P olya r om a tic Low er Ca vities: Syn th esis
a n d Str u ctu r e
Patrick T. Lewis and Robert M. Strongin*
Department of Chemistry, Louisiana State University,
Baton Rouge, Louisiana 70803
Received April 8, 1998
In Nature, interactions derived from π-systems are of
immense importance, influencing protein structure and
molecular recognition.1 Conjugated organic materials are
the basis of the burgeoning field of molecular electronics.2
Electronic organic materials embodying extended, semi-
rigid, and well-defined π-cavities might thus find use as
discriminating biomimetic molecular hosts for multipoint
π-π, CH-π, and ion-π interactions. Calixarenes are
attractive synthetic receptors with preorganized, electron-
rich π-cavities and versatile properties.3 They have been
employed as substrates for aryl-aryl coupling reactions
to lengthen their aromatic cavities with the goal of
promoting binding to larger guests.4 X-ray structure
analysis has shown, however, that severe conformational
distortion occurs upon 4-fold coupling to a biphenyl
substituent; the triphenyl arms exhibit skewed direc-
tionality, and a defined cavity is not attained.4c
Resorcinarenes have also been extensively studied as
π-rich, hydrogen bonding molecular hosts.5 Unlike calix-
arenes, which are typically obtained via formaldehyde
condensations, resorcinarenes are synthesized from sub-
stituted aldehydes. The aldehyde-derived appendages
reside on the lower rim of the macrocycles. Their steric
bulk prevents conformational interconversion; therefore,
Compound 1 undergoes 4-fold Suzuki coupling (Scheme
1) with arylboronic acids containing electron-donating or
-withdrawing groups to furnish the deepened lower cavity
cavitands 3a -c as the only observed macrocyclic reaction
products.10 A mixture of Pd(PPh3)4 (0.036 g, 0.031 mmol),
20 mL of DMF, compound 1 (0.300 g, 0.259 mmol), K2-
CO3 (0.286 g, 2.07 mmol), and ArB(OH)2 (0.139 g, 1.14
mmol) in 30 mL of a 2:1 solution of DMF/H2O is stirred
under N2 for 48 h at 65 °C. The solvent is removed in
vacuo, and the residue is stirred in water and methanol
(1) Leading references and reviews: (a) Burley, S. K.; Petsko, G. A.
Science 1985, 229, 23. (b) Principles of Nucleic Acid Structure; Saenger,
W., Ed.; Springer-Verlag: New York, 1984. (c) Hunter, C. A.; Sanders,
J . K. M. J . Am. Chem. Soc. 1990, 112, 5525. (d) Hunter, C. A. Chem.
Soc. Rev. 1994, 23, 101. (e) Ma, J . C.; Dougherty, D. A. Chem. Rev.
1997, 97, 1303, and references therein.
(2) (a) Molecular Electronic Devices; Carter, F. L., Ed.; Marcel
Dekker: New York, 1982. (b) Molecular Electronic Devices II; Carter,
F. L., Ed.; Marcel Dekker: New York, 1987. (c) Molecular Electronics:
Science and Technology; Aviram, A., Ed.; Conference Proceedings No.
262; American Institute of Physics: New York, 1992. (d) Miller, J . S.
Adv. Mater. 1990, 2, 378. (e) Molecular and Biomolecular Electronics;
Birge, R. R., Ed.; Advances in Chemistry Series 240; American
Chemical Society: Washington, DC, 1991. (f) Nanostructures and
Mesoscopic Systems; Kirk, W. P., Reed, M. A., Eds.; Academic: New
York, 1992. (g) Pearson, D. L.; J ones, L., III; Schumm, J . S.; Tour, J .
M. Synth. Met. 1997, 84, 303.
(3) (a) Calixarenes; Royal Society of Chemistry: Cambridge, U.K.,
1989. (b) Calixarenes: A Versatile Class of Macrocyclic Compounds;
Bohmer, V., Vicens, J ., Eds.; Kluwer: Dordrecht, The Netherlands,
1990.
(4) (a) Arduni, A.; Pochini, A.; Rizzi, A.; Sicuri, A. R.; Ungaro, R.
Tetrahedron Lett. 1990, 31, 4653. (b) Wong, M. S.; Nicoud, J . F.
Tetrahedron Lett. 1993, 34, 8237. (c) J uneja, R. K.; Robinson, K. D.;
J ohnson, C. P.; Atwood, J . L. J . Am. Chem. Soc. 1993, 115, 3818. (d)
Haino, T.; Harano, T.; Matsumura, K.; Fukazawa, Y. Tetrahedron Lett.
1995, 36, 5793. (e) Arduini, A.; McGregor, W. M.; Paganuzzi, D.;
Pochini, A.; Secchi, A.; Ugozzoli, F.; Ungaro, R. J . J . Chem. Soc., Perkin
Trans. 2 1996, 66, 839. (f) Larsen, M.; J orgensen, M. J . Org. Chem.
1997, 62, 4171.
(6) (a) Tucker, J . A.; Knobler, C. B.; Trueblood, K. N.; Cram, D. J .
J . Am. Chem. Soc. 1989, 111, 3688. (b) Botta, B.; Lacomacci, P.; Di
Giovanni, C.; Della Monache, G.; Gacs-Baitz, E.; Botta, M.; Tafi, A.;
Corelli, F.; Misiti, D. J . Org. Chem. 1992, 57, 3259. (c) Botta, B.; Di
Giovanni, C.; Delle Monache, G.; De Rosa, M. C.; Gacs-Baitz, E.; Botta,
M.; Corelli, F.; Tafi, A.; Santini, A.; Benedetti, E.; Pedone, C.; Misiti,
D. J . Org. Chem. 1994, 59, 1532. (d) Gibb, B. C.; Chapman, R. G.;
Sherman, J . C. J . Org. Chem. 1996, 61, 1505. (e) Botta, B.; Di Giovanni,
C.; Delle Monache, G.; Salvatore, P.; Gasparrini, F.; Villiani, C.; Botta,
M.; Corelli, F.; Tafi, A.; Gacs-Baitz, E.; Santini, A.; Benedetti, E.;
Caravalho, C. F.; Misiti, D. J . Org. Chem. 1997, 62, 932. (f) Botta, B.;
Delle Monache, G.; De Rosa, M. C.; Seri, C.; Benedetti, E.; Iacovino,
R.; Botta, M.; Corelli, F.; Masignani, V.; Tafi, A.; Bacs-Baitz, E.;
Santini, A.; Misiti, D. J . Org. Chem. 1997, 62, 1788. (g) Curtis, A. D.
M. Tetrahedron Lett. 1997, 38, 4295. (h) Akimoto, S.; Nishizawa, H.;
Yamakazi, T.; Yamakazi, I.; Hayashi, Y.; Fujimaki, T.; Ichimura, K.
Chem. Phys. Lett. 1997, 276, 405.
(7) Lewis, P. T.; Davis, C. J .; Saraiva, M.; Treleaven, D.; McCarley,
T.; Strongin, R. M. J . Org. Chem. 1997, 62, 6110.
(8) Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun. 1981, 11,
513.
(9) Moran, J . R.; Karbach, S.; Cram, D. J . J . Am. Chem. Soc. 1982,
104, 5826.
(10) Suzuki couplings at the upper rim of cavitands: (a) von dem
Bussche-Huennefeld, C.; Helgeson, R. C.; Buehring, D.; Knobler, C.
B.; Cram, D. J . Croat. Chem. Acta 1996, 69, 447. (b) Ma, S.; Rudkevich,
D. M.; Rebek, J ., J r. J . Am. Chem. Soc. 1998, 120, 4977.
(5) (a) Schneider, H.-J .; Schneider, U. J . Inclusion Phenom. 1994,
19, 67. (b) Container Molecules and Their Guests; Cram, D. J ., Cram,
J . M., Eds.; The Royal Society of Chemistry: Cambridge, U.K., 1994;
Vol. 4. (c) Bohmer, V. Angew. Chem., Int. Ed. Engl. 1995, 34, 713. (d)
Gutsche, C. D. Aldrichchim. Acta 1995, 28, 3. (e) Sherman, J . C.
Tetrahedron 1995, 51, 3395. (f) Timmerman, P.; Verboom, W.; Rein-
houdt, D. N. Tetrahedron 1996, 52, 2663.
S0022-3263(98)00655-0 CCC: $15.00 © 1998 American Chemical Society
Published on Web 07/25/1998