C. J. O’Donnell et al. / Bioorg. Med. Chem. Lett. 19 (2009) 4747–4751
4751
Table 5
9. GH4C1 cells binding assay was performed as previously described with slight
modification (see Ref. 12): Quik, M.; Choremis, J.; Komourian, J.; Lukas, R. J.;
Puchacz, E. J. Neurochem. 1996, 67, 145. The data reported in the tables
represents the average of three six point dose–response curves that were run in
a single assay. Compound 5 was used as an internal standard in each assay and
had a Ki = 38.3 3.6 nM (n = 27).
Selected physicochemical properties, ADME, and pharmacokinetic data for 5 and 7aa
Br
O
O
10. Xenopus oocytes were harvested surgically and treated with collagenase
(1.3 mg/mL) for 3 h to remove the follicular layer. The oocytes were injected
with 10–50 ng of rat alpha7 neuronal nicotinic receptor cRNA and stored in
N
O
N
O
N
N
5
7aa
Barth’s saline for up to
2 weeks. Electrophysiological recordings were
performed 4–10 days later using two-electrode voltage clamp. The oocytes
were placed in the recording chamber and superfused with Ringer’s saline (in
mM: 115 NaCl, 2.5 KCl, 0.4 BaCl2, 0.1 CaCl2, 10 HEPES, pH 7.5) containing
agonists or antagonists. Electrodes are filled with 3 M KCl. Holding potential
(Vh) = ꢂ60 or ꢂ90 mV. Currents induced by the application of drugs were
digitized by a Data Translation a/d board and analyzed with AXODATA software.
Compound
5
7aa
MW
325.21
2.9
2.1
33
>65
296.37
3.1
2.3
33
>65
12/48
8%
>3160
12.0
61
5290
463
11.6
343
cLog P
Log Da
TPSA
Aq Solubility (
Caco-2 AB/BA
All test compounds were tested at 32
nicotine at 50 M. Data is reported as a % nicotine response with the nicotine
response defined as 100%. For comprehensive reference on the
lM and are compared to a test dose of
l
g/ml)
l
10/26
46%
a
hERG, %inh @ 10
l
Mb
characterization of nicotinic receptors in oocytes see: Chavez-Noriega, L. E.;
Crona, J. H.; Washburn, M. S.; Urrutia, A.; Elliott, K. J.; Johnson, E. C. J. Pharmacol.
Exp. Ther. 1997, 280, 346.
c
5-HT3 IC50 (nM)
>3160
<6.8
>105
5461
648
HLM Clintd (ml/min/kg)
T1/2 (min)
11. McGuirk, P. R.; Jefson, M. R.; Mann, D. D.; Elliott, N. C.; Chang, P.; Cisek, E. P.;
Cornell, C. P.; Gootz, T. D.; Haskell, S. L.; Hindahl, M. S.; LaFleur, L. J.; Rosenfeld,
M. J.; Shryock, T. R.; Silvia, A. M.; Weber, F. H. J. Med. Chem. 1992, 35, 611.
12. O’Donnell, C. J.; O’Neill, B. T. U.S.02/177591, 2002.
Braine (ng/g)
Plasmae (ng/ml)
Brain/plasma
CSFe (nM)
9.1
774
13. Concurrent to our work, scientists at Sanofi-Aventis also arrived at the same
compound (5, SR 180711) and have reported detailed in vitro and in vivo data
on this compound: (a) Gallet, T.; Jegham, S.; Lardenois, P.; Lochead, A.; Nedelec,
A. WO00/58311, 2000.; (b) Biton, B.; Bergis, O. E.; Galli, F.; Nedelec, A.; Lochead,
A. W.; Jegham, S.; Godet, D.; Lanneau, C.; Santamaria, R.; Chesney, F.;
Léonardon, J.; Granger, P.; Debono, M. W.; Bohme, G. A.; Sgard, F.; Besnard,
F.; Graham, D.; Coste, A.; Oblin, A.; Curet, O.; Vigé, X.; Voltz, C.; Rouquier, L.;
Souilhac, J.; Santucci, V.; Gueudet, C.; Francon, D.; Steinberg, R.; Griebel, G.;
Oury-Donat, F.; George, P.; Avenet, P.; Scatton, B. Neuropsychopharmacology
2007, 32, 1; (c) Pichat, P.; Bergis, O. E.; Terranova, J.-P.; Urani, A.; Duarte, C.;
Santucci, V.; Gueudet, C.; Volts, C.; Steinberg, R.; Stemmelin, J.; Oury-Donat, F.;
Avenet, P.; Griebel, G.; Scatton, B. Neuropsychopharmacology 2007, 32, 17; (d)
Barak, S.; Arad, M.; De Levie, A.; Black, M. D.; Griebel, G.; Weiner, I.
Neuropsychopharmacology 2009, 1.
a
Partition coefficient measured in 1-octanol/aqueous buffer @ pH 7.4.
b
The percent inhibition of binding of [3H]dofetilide to hERG stably expressed on
HEK293 cells.
c
HEK293 cells expressing h 5-HT3 binding assay, [3H]-LY278584, all values
represent an average of a six point dose–response curve run in triplicate.28
d
Determined using pooled liver microsomes in phosphate buffer @ pH 7.4 and
1
l
M substrate concentration, with sampling made at the 30 min time point.
Rat in vivo pharmacology: male Sprague-Dawley rats (n = 3) were treated with
e
5 mg/kg s.c. of test compound. Brain, Plasma, and CSF (cerebral spinal fluid) were
assessed at 1 h post dose.
14. (a) Mikhlina, E. E.; Rubtsov, M. V. Zh. Org. Khim. 1963, 33, 2167; (b) Rubtsov, M.
V.; Mikhlina, E. E.; Vorob’eva, V. Ya.; Yanina, A. D. Zh. Org. Khim. 1964, 34, 2222.
15. Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60, 7508.
16. For experimental details along with full characterization date see Ref. 12.
17. Mendoza, J. S.; Jagdmann, G. E.; Gosnell, P. A. Bioorg. Med. Chem. Lett. 1995, 5,
2211.
Acknowledgments
The authors thank Dr. Bruce N. Rogers, Dr. Christopher J. Helal,
Dr. Jacob B. Schwarz, and Dr. Amy B. Dounay for their helpful sug-
gestions in preparing this manuscript.
18. Characteristic NMR signals for the major isomer: 1H NMR, 3.37 ppm, 2H (N–
CH2); 13C NMR/DEPT experiments, 46.0 ppm (CH–N), 32.9 ppm (N–CH2–)
25.9 ppm (N–CH2CH2).
19. Horenstein, N. A.; Leonik, F. M.; Papke, R. L. Mol. Pharmacol. 2008, 74, 1496.
20. Rat brain homogenate binding assay was performed as previously described,
see: (a) Lippiello, P. M.; Fernandes, K. G. Mol. Pharmacol. 1986, 29, 448; (b)
Anderson, D. J.; Arneric, S. P. Eur. J. Pharm. 1994, 253, 261. The data reported in
the tables represents the average of three six point dose–response curves that
were run in a single assay. Nicotine was used as an internal standard in each
assay and had an IC50 = 1.65 0.47 nM (n = 12).
21. Compound 24 was prepared by reacting 1,4-diazabicyclo[3.2.2]nonane with 4-
bromophenylisocyanate in 14% yield.
22. Compound 25 was prepared by reacting 1,4-diazabicyclo[3.2.2]nonane with 2-
(4-bromophenyl)acetyl chloride in 41% yield.
23. Compound 26 was prepared by reacting 1,4-diazabicyclo[3.2.2]nonane with
phenylchlorothionocarbonate using the conditions to prepare 7 in 58% yield.
24. Compound 27 was prepared from benzylchloroformate using the conditions to
prepare 7 in 15% yield.
25. Compound 28 was prepared by reacting 1,4-diazabicyclo[3.2.2]nonane with 4-
bromophenylsulfonylchloride in 41% yield.
References and notes
1. (a) Lyon, E. R. Psychiat. Serv. 1999, 50, 1346; (b) Simosky, J. K.; Stevens, K. E.;
Freedman, R. Curr. Drug Targ.—CNS & Neurol. Dis. 2002, 1, 149; (c) Leonard, S.;
Gault, J.; Hopkins, J.; Logel, J.; Vianzon, R.; Short, M.; Drebing, C.; Berger, R.;
Venn, D.; Sirota, P.; Zerbe, G.; Olincy, A.; Ross, R. G.; Adler, L. E.; Freedman, R.
Arch. Gen. Psychiat. 2002, 59, 1085; (d) Lightfoot, A. P.; Kew, J. N. C.; Skidmore, J.
Prog. Med. Chem. 2008, 46, 131.
2. (a) Olincy, A.; Stevens, K. E. Biochem. Pharmacol. 2007, 74, 1192; (b) Levin, E. D.;
Simon, B. B. Psychopharmacology 1998, 138, 217.
3. Wishka, D. G.; Walker, D. P.; Yates, K. M.; Reitz, S. C.; Jia, S.; Myers, J. K.; Olson,
K. L.; Jacobsen, E. J.; Wolfe, M. L.; Groppi, V. E.; Hanchar, A. J.; Thornburgh, B. A.;
Cortes-Burgos, L. A.; Wong, E. H. F.; Staton, B. A.; Raub, T. J.; Higdon, N. R.; Wall,
T. M.; Hurst, R. S.; Walters, R. R.; Hoffmann, W. E.; Hajos, M.; Franklin, S.; Carey,
G.; Gold, L. H.; Cook, K. K.; Sands, S. B.; Zhao, S. X.; Soglia, J. R.; Kalgutkar, A. S.;
Arneric, S. P.; Rogers, B. N. J. Med. Chem. 2006, 49, 4425.
26. IMR32 cells binding assay was performed as previously described, see: (a)
Donnelly-Roberts, D. L.; Puttfarcken, P. S.; Kuntzweiler, T. A.; Briggs, C. A.;
Anderson, D. J.; Campbell, J. E.; Piattoni-Kaplan, M.; McKenna, D. G.; Wasicak, J.
T.; Holladay, M. W.; Williams, M.; Arneric, S. P. J. Pharmacol. Exp. Ther. 1998,
285, 777; (b) Sullivan, J. P.; Decker, M. W.; Brioni, J. D.; Donnelly-Roberts, D.;
Anderson, D. J.; Bannon, A. W.; Kang, C.-H.; Adams, P.; Piattoni-Kaplan, M.;
Buckley, M. J.; Gopalakrishnan, M.; Williams, M.; Arneric, S. P. J. Pharmacol. Exp.
Ther. 1994, 271, 624. The data reported in the tables represents the average of
three six point dose–response curves that were run in a single assay. 3-
Bromocytisine was used as an internal standard in each assay and had an
IC50 = 15.6 1.76 nM (n = 3).
4. Mullen, G.; Napier, J.; Balestra, M.; DeCory, T.; Hale, G.; Macor, J.; Mack, R.;
Loch, J., III; Wu, E.; Kover, A.; Verhoest, P.; Sampognaro, A.; Phillips, E.; Zhu, Y.;
Murray, R.; Griffith, R.; Blosser, J.; Gurley, D.; Machulskis, A.; Zongrone, J.;
Rosen, A.; Gordon, J. J. Med. Chem. 2000, 43, 4045–4050.
5. Tatsumi, R.; Seio, K.; Fujio, M.; Katayama, J.; Horikawa, T.; Hashimoto, K.;
Tanaka, H. Bioorg. Med. Chem. Lett. 2004, 14, 3781.
6. (a) Macor, J. E.; Wu, E. WO97/30998, 1997.; (b) Guendisch, D.; Andrae, M.;
Munoz, L.; Tilotta, M. C. Bioorg. Med. Chem. 2004, 12, 4953.
7. Walker, D. P.; Wishka, D. G.; Piotrowski, D. W.; Jia, S.; Reitz, S. C.; Yates, K. M.;
Myers, J. K.; Vetman, T. N.; Margolis, B. J.; Jacobsen, E. J.; Acker, B. A.; Groppi, V.
E.; Wolfe, M. L.; Thornburgh, B. A.; Tinholt, P. M.; Cortes-Burgos, L. A.; Walters,
R. R.; Hester, M. R.; Seest, E. P.; Dolak, L. A.; Han, F.; Olson, B. A.; Fitzgerald, L.;
Staton, B. A.; Raub, T. J.; Hajós, M.; Hoffmann, W. E.; Li, K. S.; Higdon, N. R.; Wall,
T. M.; Hurst, R. S.; Wong, E. H. F.; Rogers, B. N. Bioorg. Med. Chem. 2006, 14,
8219.
8. Rogers, B. N. Agonists of alpha 7 nAChRs for the Potential Treatment of Cognitive
Deficits in Schizophrenia, Nicotinic Acetylcholine Receptors as Therapeutic Targets:
Emerging Frontiers in Basic Research and Clinical Sciences; San Diego, CA, Oct. 31-
Nov. 2, 2007.
27. The chloroformate used to prepare 7z was prepared in three-steps from 2-
bromo-5-hydroxybenzaldehyde (Harmata, M.; Kahraman, M. J. Org. Chem.
1999, 64, 4949). 2-Bromo-5-hydroxybenzaldehyde was reacted with phenyl
magnesium
bromide
in
THF
at
rt
to
give
4-bromo-3-
(hydroxy(phenyl)methyl)phenol in 88% yield. Swern oxidation provided (2-
bromo-5-hydroxyphenyl)-(phenyl)methanone in 22% yield which was treated
with phosgene to give the desired chloroformate.
28. Wong, D. T.; Robertson, D. W.; Reid, L. R. Eur. J. Pharmacol. 1989, 166, 107.