X. Zhang et al. / Journal of Catalysis 265 (2009) 155–160
159
A
B
100
80
60
40
20
0
50
SE2
S1
40
30
20
10
0
SZ2
Sn
Ar
Ar
Au/TiO2
H2
0
1
2
3
4
5
6
Time on Stream /h
IRMOF-3-SI-Au
Fig. 3. (A) 1,3-Butadiene conversion versus time on stream and (B) product selectivity over IRMOF-3-SI (M), IRMOF-3-SI-Au (j), and Au/TiO2 pretreated in flowing H2 at
250 °C (s) and Ar 130 °C (.) at 130 °C. S1, SE2, SZ2, and Sn represent the selectivity of 1-butene, E-2-butene, Z-2-butene, and n-butane, respectively.
H2 both contain metallic gold, our results show that the oxidation
state of gold is proven to be important for hydrogenation of 1,3-
butadiene. The MOF-stabilized Au(III) species is more active than
TiO2-supported metallic gold. Interestingly, IRMOF-3-SI-Au shows
very high selectivity (up to 97%) for butenes with 1-butene and
E-2-butene as the main products, and only 3% of butane selectivity
is detected at almost completely consumption of 1,3-butadiene. On
the contrary, a significant amount of butane (ca. 8%) was formed on
Au/TiO2 pretreated in H2 even at low conversion of 1,3-butadiene,
and the butane selectivity sharply decreased for Ar pretreated Au/
TiO2 catalyst (Fig. 3b).
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
References
[1] (a) For selected reviews, see: G.C. Bond, D.T. Thompson, Catal. Rev. Sci. Eng. 41
(1999) 319;
(b) M. Haruta, Chem. Rec. 3 (2003) 75;
(c) A.S.K. Hashmi, G.J. Hutchings, Angew Chem. 118 (2006) 8064 (Angew.
Chem. Int. Ed. 45 (2006) 7896);
Since gold remains as Au(III) in IRMOF-3-SI-Au after the hydro-
genation reaction, we confirm the previous suggestion that mono-
nuclear Au(III) species [14] and isolated Au(III) [9c,9d,9e] are the
active sites for ethane and 1,3-butadiene hydrogenation. This con-
clusion would be in agreement with the fact that homogeneous
Au(III) Schiff base complex can activate H2, and catalyzes the li-
quid-phase hydrogenation of diethyl itaconate in a batch reactor
[10]. In the case of the MOF, we have now a solid catalyst with ac-
tive surface-type Au(III) Schiff base complex that can activate H2
and selectively perform the gas-phase hydrogenation of 1,3-buta-
diene. The clear advantage of the gold MOF catalyst with respect
to MgO-supported mononuclear Au(III) species is that the latter
are not stable in air and must be kept under anaerobic and anhy-
drous conditions [14], while IRMOF-3-SI-Au is stable in air and
shows very stable activity for the selective hydrogenation of 1,3-
butadiene (Fig. S9).
(d) D.J. Gorin, F.D. Toste, Nature 446 (2007) 395;
(e) A. Corma, P. Serna, Science 313 (2006) 332.
[2] (a) For selected references, see: G.C. Bond, C. Louis, D.T. Thompson, in:
Catalysis Science Series, vol. 6, Catalysis by Gold, 2006;
(b) X. Zhang, H. Wang, B.-Q. Xu, J. Phys. Chem. B 109 (2005) 9678;
(c) A.S.K. Hashmi, Angew Chem. 117 (2005) 7150 (Angew. Chem. Int. Ed. 44
(2005) 6990);
(d) A. Hoffmann-Röder, N. Krause, Org. Biomol. Chem. 3 (2005) 387.
[3] (a) A. Corma, Catal. Rev. 46 (2004) 319;
(b) X. Zhang, A. Corma, Chem. Commun. 3080 (2007);
(c) X. Zhang, A. Corma, Dalton Trans. 397 (2008);
(d) Y. Fukuda, K. Utimoto, J. Org. Chem. 56 (1991) 3729;
(e) T.E. Müller, Tetrahedron Lett. 39 (1998) 5961.
[4] (a) For selected references, see: M. Eddaoudi, D.B. Moler, H. Li, B. Chen, T.M.
Reineke, M. O’Keeffe, O.M. Yaghi, Acc. Chem. Res. 34 (2001) 319;
(b) M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O.M. Yaghi,
Science 295 (2002) 469;
(c) G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, I.
Margiolaki, Science 309 (2005) 2040;
(d) M. Alvaro, E. Carbonell, B. Ferrer, F.X. Llabres i Xamena, H. Garcia, Chem.
Eur. J 13 (2007) 5106;
In conclusion a novel catalyst has been prepared by modifica-
tion of a metal organic framework (IRMOF-3) with coordinative
unsaturated Au(III) species based on a post-synthesis strategy.
The resulting heterogeneous IRMOF-3-SI-Au catalyst exhibits
high ability to stabilize cationic Au(III) species and 100% utility
of gold active sites, which has emulated the catalytic properties
of homogeneous gold catalysis. The IRMOF-3-SI-Au gives much
higher catalytic performance in catalyzed domino coupling and
cyclization of N-protected ethylanilines, amine, and aldehyde in
comparison with oxide-supported gold and homogeneous gold
salt/complex, and it has also demonstrated that Au(III) species
are highly active and selective for the selective hydrogenation
of 1,3-butadiene.
(e) F.X. Llabres i Xamena, O. Casanova, R. Galiasso Tailleur, H. Garcia, A. Corma,
J. Catal. 255 (2008) 220;
(f) F.X. Llabres i Xamena, A. Abad, A. Corma, H. Garcia, J. Catal. 250 (2007) 294;
(g) B.V. Harbuzaru, A. Corma, F. Rey, P. Atienzar, J.L. Jorda, H. Garcia, D.
Ananias, L.D. Carlos, J. Rocha, Angew. Chem. Int. Ed. 47 (2008) 1080.
[5] (a) S.S.Y. Chui, S.M.F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, Science 283
(1999) 1148;
(b) S. Horike, M. Dinca, K. Tamaki, J.R. Long, J. Am. Chem. Soc. 130 (2008) 5854;
(c) S. Noro, S. Kitagawa, M. Yamashita, T. Wada, Chem. Commun. 222 (2002);
(d) D.N. Dybtsev, A.L. Nuzhdin, H. Chun, K.P. Bryliakov, E.P. Talsi, V.P. Fedin, K.
Kim, Angew. Chem. Int. Ed. 45 (2006) 916;
(e) M. Kawano, T. Kawamichi, T. Haneda, T. Kojima, M. Fujita, J. Am. Chem. Soc.
129 (2007) 15418.
[6] (a) Z.Q. Wang, S.M. Cohen, J. Am. Chem. Soc. 129 (2007) 12368;
(b) K.K. Tanabe, Z. Wang, S.M. Cohen, J. Am. Chem. Soc. 130 (2008) 8508;
(c) J.S. Costa, P. Gamez, C.A. Black, O. Roubeau, S.J. Teat, J. Reedijk, Eur. J. Inorg.
Chem. 1551 (2008);
(d) M.J. Ingleson, J.P. Barrio, J. Bacsa, C. Dickinson, H. Park, M.J. Rosseinsky,
Chem. Commun. 1287 (2008);
(e) Y.K. Hwang, D.Y. Hong, J.S. Chang, S.H. Jhung, Y.K. Seo, J. Kim, A. Vimont, M.
Daturi, C. Serre, G. Ferey, Angew. Chem. Int. Ed. 47 (2008) 4144;
(f) W. Morris, C.J. Doonan, H. Furukawa, R. Banerjee, O.M. Yaghi, J. Am. Chem.
Soc. 130 (2008) 12626;
Acknowledgments
The authors thank the Dirección General de Investigación
´
Cientıfica y Técnica of Spain (Project MAT2006-14274-C02- 01)
(g) M.J. Ingleson, J.P. Barrio, J.B. Guilbaud, Y.Z. Khimyak, M.J. Rosseinsky, Chem.
Commun. 2680 (2008).
and the UPV (Project PAID-06-06-4726) for funding. The Ministerio
de Educación y Ciencia of Spain is gratefully acknowledged for a
‘‘Ramón y Cajal” research contract to FXLX. Experimental assis-
[7] (a) J.M. Notestein, A. Katz, Chem. Eur. J. 12 (2006) 3954;
(b) A. Corma, Catal. Rev. Sci. Eng. 46 (2004) 369.
[8] L.M. Huang, H.T. Wang, J.X. Chen, Z.B. Wang, J.Y. Sun, D.Y. Zhao, Y.S. Yan,
Micropor. Mesopor. Mater. 58 (2003) 105.
´
tance of Á. Cantın and E. Peris is acknowledged.