the surface of zirconium oxide or incorporating these
derivatives in isomorphous matrices.28-31 Very recently, it
was proven that an appropriate choice of a porphyrin
backbone makes possible the assembly of phosphonate
porphyrins in extended 1D chains.32,33 Due to the nonplanar
character of the phosphonate group, it is clear that the
fabrication of phosphonate porphyrin-based 2D and 3D
architectures is a priori more difficult than the elaboration
of such materials using carboxylic or pyridyl porphyrins as
a precursor. In this work, we describe the first example of a
meso-phosphorylporphyrin-based polymer exhibiting a 2D structure
and the self-organization of such a porphyrin ligand in solution.
One of the major challenges that still lies ahead to fabricate
materials containing phosphonato-substituted porphyrins is the
finding of an efficient synthetic method for these precursors.
Only a multistep synthesis developed by Lindsey’s group,34 or
a Pd-catalyzed phosphorylation according to Hirao’s condi-
tions,35,36 gives porphyrins possessing (4-dialkoxyphospho-
rylaryl) groups at the periphery of the macrocycle. Two
monosubstituted meso-phosphoryl porphyrin derivatives have
been recently obtained via a Cu-catalyzed phosphorylation
reaction.37 The widely applicable transition-metal-catalyzed
cross-coupling methodology is a powerful tool in porphyrin
series synthesis. For example, the formation of carbon-carbon
bonds is obtained by Suzuki or Sonogashira reactions, and
more recently hetero-cross-coupling reactions (C-N, C-O,
C-S, C-B, C-P) have been successfully realized.38-40
However, compared to regular classical methods used for
common aryl halide derivatives, particular experimental
conditions should be found to allow the catalytic transforma-
tions due to the electronic structure of the porphyrins or their
solubility. We have probed a catalytic methodology to
prepare polyphosphoryl-substituted porphyrins which are
suitable precursors to elaborate 2D- or 3D-ordered architec-
tures (Scheme 1).
Scheme 1
.
Pd-Catalyzed Coupling of meso-Bromoporphyrins
with Diethylphosphite
(12) Goldberg, I. Chem.sEur. J. 2000, 6, 3863
(13) Diskin-Posner, Y.; Patra, G. K.; Goldberg, I. J. Chem. Soc., Dalton
Trans. 2001, 2775
(14) Iengo, E.; Zangrando, E.; Minatel, R.; Alessio, E. J. Am. Chem.
Soc. 2002, 124, 1003
.
.
.
(15) Shmilovits, M.; Vinodu, M.; Goldberg, I. Cryst. Growth Des. 2004,
4, 633
.
(16) Muniappan, S.; Lipstman, S.; Goldberg, I. Acta Crystallogr., Sect.
The results are summarized in Table 1.41 When classical
Hirao’s conditions are applied for the diphosphorylation of 5,15-
C: Cryst. Struct. Commun. 2006, C62, m495
(17) Taniguchi, M.; Ptaszek, M.; McDowell, B. E.; Boyle, P. D.;
Lindsey, J. S. Tetrahedron 2007, 63, 3850
(18) Adilov, S.; Thalladi, V. R. Cryst. Growth Des. 2007, 7, 481
.
.
.
(19) Ku¨hn, E.; Bulach, V.; Hosseini, M. W. Chem. Commun. 2008, 5104
.
(20) Kojima, T.; Honda, T.; Ohkubo, K.; Shiro, M.; Kusukawa, T.;
Fukuda, T.; Kobayashi, N.; Fukuzumi, S. Angew. Chem., Int. Ed. 2008,
Table 1. Synthesis of meso-Polyphosphorylporphyrins
47, 6712
.
(21) Mizumura, M.; Shinokubo, H.; Osuka, A. Angew. Chem., Int. Ed.
2008, 47, 5378
(22) Choi, E.-Y.; Barron, P. M.; Novotny, R. W.; Son, H.-T.; Hu, C.;
Choe, W. Inorg. Chem. 2009, 48, 426
(23) Yoon, S. M.; Hwang, I.-C.; Kim, K. S.; Choi, H. C. Angew. Chem.,
Int. Ed. 2009, 48, 2506
(24) Alberti, G. Acc. Chem. Res. 1978, 11, 163
bromide
derivative
Pd(OAc)2/
3PPh3 equiv
HOP(OEt)2
equiv
.
product
yield %
.
1H2
1H2
1Zn
3Zn
5Zn
0.1
1.0
0.1
0.1
0.3
2.4
24
2.4
14
2H2
2H2
2Zn
4Zn
6Zn
<5
32
51
68
50
.
.
(25) Cao, G.; Hong, H. G.; Mallouk, T. E. Acc. Chem. Res. 1992, 25,
14
420
.
(26) Clearfield, A. Prog. Inorg. Chem. 1998, 47, 371
(27) Clearfield, A.; Wang, Z. J. Chem. Soc., Dalton Trans. 2002, 2937
(28) Ungashe, S. B.; Wilson, W. L.; Katz, H. E.; Scheller, G. R.;
Putvinski, T. M. J. Am. Chem. Soc. 1992, 114, 8717
(29) Nixon, C. M.; Le Claire, K.; Odobel, F.; Bujoli, B.; Talham, D. R.
Chem. Mater. 1999, 11, 965
(30) Benitez, I. O.; Bujoli, B.; Camus Laurent, J.; Lee, C. M.; Odobel,
.
.
.
dibromo-10,20-diphenylporphyrin 1Zn, the target product 2Zn
was obtained as traces. Our attempts to optimize the synthesis
have shown that the nature of the solvent is a key parameter
on the reaction pathway. A high yield of the product 2Zn (51%)
was obtained in the presence of 10 mol % of catalytic precursor
Pd(OAc)2/3PPh3 when ethanol was used as a solvent. The
phosphorylation of 1Zn was more efficient and gave a higher
yield of the target product compared to the reaction involving
the free base 1H2. Indeed, only traces of product 2H2 were
observed under catalytic conditions (10 mol % Pd(OAc)2/
3PPh3). 2H2 has been obtained only in the presence of a
stoichiometric amount of palladium precursors and a large
excess (24 equiv) of diethylphosphite using 1H2 as starting
.
F.; Talham, D. R. J. Am. Chem. Soc. 2002, 124, 4363
.
(31) Libera, J. A.; Gurney, R. W.; Schwartz, C.; Jin, H.; Lee, T.-L.;
Nguyen, S. T.; Hupp, J. T.; Bedzyk, M. J. J. Phys. Chem. B 2005, 109,
1441
.
(32) Atefi, F.; McMurtrie, J. C.; Turner, P.; Duriska, M.; Arnold, D. P.
Inorg. Chem. 2006, 45, 6479
(33) Atefi, F.; McMurtrie, J. C.; Arnold, D. P. Dalton Trans. 2007, 2163
.
.
(34) Loewe, R. S.; Ambroise, A.; Muthukumaran, K.; Padmaja, K.;
Lysenko, A. B.; Mathur, G.; Li, Q.; Bocian, D. F.; Misra, V.; Lindsey,
J. S. J. Org. Chem. 2004, 69, 1453.
(35) Kubat, P.; Lang, K.; Anzenbacher, P. Biochim. Biophys. Acta 2004,
1670, 40.
(36) Muthukumaran, K.; Loewe, R. S.; Ambroise, A.; Tamaru, S.-i.;
Li, Q.; Mathur, G.; Bocian, D. F.; Misra, V.; Lindsey, J. S. J. Org. Chem.
2004, 69, 1444.
(37) Matano, Y.; Matsumoto, K.; Terasaka, Y.; Hotta, H.; Araki, Y.;
Ito, O.; Shiro, M.; Sasamori, T.; Tokitoh, N.; Imahori, H. Chem.sEur. J.
2007, 13, 891.
(38) Sharman, W. M.; Van Lier, J. E. J. Porphyrins Phthalocyanines
2000, 4, 441
.
(39) Setsune, J.-i. J. Porphyrins Phthalocyanines 2004, 8, 93
.
Org. Lett., Vol. 11, No. 17, 2009
3843