Article
Crystal Growth & Design, Vol. 10, No. 2, 2010 573
ethylation. That is probably responsible not only for changes
in the ligand σ-donor strength, but also for remarkable
variations in the tetrazole π-interannular conjugation.27
The luminescence properties of the free ligand H2L1 and
their complexes in the solid state at room temperature were
investigated. In Figure 8b, as disscussed above, H2L1 ex-
hibits an intense blue emission band at 460 nm upon excita-
tion at 360 nm. The emission bands of complexes 1, 2, 5
displays strong/weak fluorenscence-emission bands at 362,
378, 392 nm (λex=331, 300, 287 nm), respectively. In the light
of the close emission energy, the emission of the complexes is
tentatively attributed to the intraligand transition (n-π*,
π-π*) of 2,3-substituted-5,6-di(1H-tetrazol-5-yl)pyrazine
modified by metal coordination. The enhancement of lumi-
nescence in ZnII complexes may be attributed to the ligation
of the ligand to the metal center. To some extent, the
coordination enhances the “rigidity” of the ligand and thus
reduces the loss of energy through a radiationless pathway.28
Heavy atom in the fluorophore increases the rate of inter-
system crossing (ISC) by strengthening spin-orbit cou-
pling.29 Thus, the decrease of fluorescence yield (radiative
transition S1 f S0) in most cases can be explained by an
increase in the probability of the completing S1 f Tn
radiationless transition of the fluorophore, and it is particu-
larly effective if the excited states involved are of the π-π*
type and that S1 f S0 decay is slow.30
References
(1) For examples: (a) Ma, S.; Zhou, H.-C. J. Am. Chem. Soc. 2006,
128, 11734–11735. (b) Pan, L.; Olson, D. H.; Ciemnolonski, L. R.;
Heddy, R.; Li, J. Angew. Chem., Int. Ed. 2006, 45, 616–619. (c) James,
S. L. Chem. Soc. Rev. 2003, 32, 276–288. (d) Kesanli, B.; Lin, W.
Coord. Chem. Rev. 2003, 246, 305–326. (e) Eddaoudi, M.; Kim, J.;
Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Science
2002, 295, 469–472. (f) Robin, A. Y.; Fromm, K. M. Coord. Chem.
Rev. 2006, 250, 2127–2157. (g) Liang, Y.-C.; Cao, R.; Su, W.-P.; Hong,
M.-C.; Zhang, W.-J. Angew. Chem., Int. Ed. 2000, 39, 3304–3307.
(h) Zeng, Y.-F.; Hu, X.; Liu, F.-C.; Bu, X.-H. Chem. Soc. Rev. 2009, 38,
469–480.
(2) (a) Batten, S. R.; Robson, R. Angew. Chem, Int. Ed. 1998, 37, 1460–
1494. (b) Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629–
1658. (c) Kim, K. Chem. Soc. Rev. 2002, 31, 96–107. (d) Bronisz, R.
Inorg. Chem. 2005, 44, 4463–4465. (e) Vittal, J. J. Coord. Chem. Rev.
2007, 251, 1781–1795.
(3) (a) Hill, R. J.; Long, D.-L.; Champness, N. R.; Hubberstey, P.;
€
Schroder, M. Acc. Chem. Res. 2005, 38, 337–350. (b) Pan, L.; Parker,
B.; Huang, X.; Olson, D. H.; Lee, J. Y.; Li, J. J. Am. Chem. Soc. 2006,
128, 4180–4181. (c) Carlucci, L.; Ciani, G.; Proserpio, D. M. Chem.
Commun. 2004, 380–381. (d) Fu, A.; Huang, X.; Li, J.; Yuen, T.; Lin,
C. L. Chem.;Eur. J. 2002, 8, 2239–2247.
(4) (a) Hao, Z.-M.; Fang, R.-Q.; Wu, H.-S.; Zhang, X.-M. Inorg.
Chem. 2008, 47, 8197–8203. (b) Kitagawa, S.; Kitaura, R.; Noro, S.-I.
Angew. Chem., Int, Ed. 2004, 43, 2334–2375. (c) Robert, B. Inorg.
Chem. 2007, 46, 6733–6739.
(5) (a) Wang, X.-W.; Chen, J.-Z.; Liu, J.-H. Cryst. Growth Des. 2007, 7,
1227–1229. (b) Cordes, D. B.; Hanton, L. R. Inorg. Chem. 2007, 46,
1634–1644. (c) Masciocchi, N.; Ardizzoia, G. A.; Brenna, S.; Castelli,
F.; Galli, S.; Maspero, A.; Sironi, A. Chem. Commun. 2003, 2018–
2019. (d) Stassen, A. F.; Grunert, M.; Mills, A. M.; Spek, A. L.;
Haasnoot, J. G.; Reedijk, J.; Linert, W. Dalton Trans. 2003, 3628–
3633.
(6) (a) Tao, J.; Ma, Z.-J.; Huang, R.-B.; Zheng, L.-S. Inorg. Chem.
2004, 43, 6133–6135. (b) Cui, Y.; Zhang, T.-L.; Zhang, J.-G.; Yang, L.;
Hu, X.-C.; Zhang, J. J. Mol. Struct. 2008, 889, 177–185.
(7) (a) Rao, C. N. R.; Natarajan, S.; Vaidhyanathan, R. Angew.
Chem., Int. Ed. 2004, 43, 1466–1496. (b) Carlucci, L.; Ciani, G.;
Proserpio, D. M. Angew. Chem., Int. Ed. 1999, 38, 3488–3492.
(c) Halder, G. J.; Kepert, C. J.; Moubaraki, B.; Murray, K. S.; Cashion,
J. D. Science 2002, 298, 1762–1765.
(8) (a) Zhao, H.; Qu, Z.-R.; Ye, H.-Y.; Xiong, R.-G. Chem. Soc. Rev.
2008, 37, 84-100 and references cited therein. (b) He, X.; Lu, C.-Z.;
Yuan, D.-Q. Inorg. Chem. 2006, 45, 5760–5766. (c) Dinca, M.; Yu,
A. F.; Long, J. R. J. Am. Chem. Soc. 2006, 128, 8904–8913.
(9) (a) Shi, Y.; Robl, J. A.; Kennedy, L. J.; Malley, M. F. Tetrahedron
Lett. 2007, 48, 555–558. (b) Zabrocki, J.; Smith, G. D.; Dunbar, J. B.;
Iijima, H.; Marshall, G. R. J. Am. Chem. Soc. 1988, 110, 5875–5880.
(c) Yu, K.-L.; Johnson, R. L. J. Org. Chem. 1987, 52, 2051–2059.
(10) (a) Ma, C.; Wang, Q.; Zhang, R. Inorg. Chem. 2008, 47, 7060–7061.
(b) Gielen, M. Appl. Organomet. Chem. 2002, 16, 481–494. (c)
Ashmore, J. P.; Chivers, T.; Kerr, K. A.; Van Roode, J. H. G. Inorg.
Chem. 1977, 16, 191–197. (d) Wengrovius, J. H.; Garbauskas, M. F.
Organometallics 1992, 11, 1334–1342.
(11) (a) Jiang, C.; Yu, Z. P.; Wang, S.; Jiao, C.; Li, J. M.; Wang, Z. Y.;
Cui, Y. Eur. J. Inorg. Chem. 2004, 3662–3667. (b) Mautner, A. F.;
Gspan, C.; Gatterer, K.; Goher, M. A. S.; Abu-Youssef, A. M.; Bucher,
E.; Sitte, W. Polyhedron 2004, 23, 1217–1224.
(12) (a) Mo, X.-J.; Gao, E.-Q.; He, Z.; Li, W.-J.; Yan, C.-H. Inorg.
Chem. Commun. 2004, 7, 353–355. (b) Wu, T.; Yi, B.-H.; Li, D. Inorg.
Chem. 2005, 44, 4130–4132. (c) Giraud, M.; Andreiadis, E. S.; Fisyuk,
The solid-state fluorescence spectra of the free ligand H2L2
and their complexes 3, 4, 6, and 7 at ambient temperature are
depicted in Figure 8c. Complexes 3 and 4 present an emission
band at 461 and 510 nm upon excitation at 413 and 446 nm,
respectively, while 6 and 7 have emission peaks at 396, 385
nm (λex =290, 280 nm). The emission may originate from
intraligand πL-πL* transitions emission (LLCT). On the
basis of H2L2, the HgII complex also exhibits much lower
intensity due to a heavy atom effect. Compared with the
strong emission of ZnII complexes, HgII complexes experi-
mented in the same condition have almost fairly weak
luminescent properties. Moreover, the phenomena that the
relative intensity of the free ligand is higher than that of ZnII
complexes might be assigned to the strong conjugation and
intermolecular interaction between the molecule segment of
the free ligand. These results indicate that the fluorescent
properties might be tuned by attaching different 2,3-substi-
tuted groups.
In conclusion, two structurally related bis(tetrazolate)
ligands bearing different substituting groups, 2,3-diethyl-
5,6-di(1H-tetrazol-5-yl)pyrazine (H2L1) and 2,3-diphenyl-
5,6-di(1H-tetrazol-5-yl)pyrazine (H2L2), have been desig-
ned, and seven ZnII and HgII coordination complexes with
the two ligands have been synthesized by hydrothermal or
conventional methods. These results indicate that the sub-
stituting groups of ligands and the reaction conditions have
great influences on the formation of these complexes.
ꢀ
A. S.; Demadrille, R.; Pecaut, J.; Imbert, D.; Mazzanti, M. Inorg. Chem.
2008, 47, 3952–3954.
(13) (a) Lu, Y.-B.; Wang, M.-S.; Zhou, W.-W.; Xu, G.; Guo, G.-C.;
Huang, J.-S. Inorg. Chem. 2008, 47, 8935–8942. (b) Rodríguez, A.;
Acknowledgment. This work was supported by the NNSF
of China (Nos. 20531040 and 50673043), the 973 Program of
China (2007CB815305) and the Natural Science Fund of
Tianjin, China (07JCZDJC00500).
€
Kivekas, R.; Colacio, E. Chem. Commun. 2005, 5228–5230. (c) Li,
R.-Y.; Wang, X.-Y.; Liu, T.; Xu, H.-B.; Zhao, F.; Wang, Z.-M.; Gao, S.
Inorg. Chem. 2008, 47, 8134–8142.
(14) (a) Lin, P.; Clegg, W.; Harrington, R. W.; Henderson, R. A. Dalton
Trans. 2005, 2388–2394. (b) Wu, T.; Chen, M.; Li, D. Eur. J. Inorg.
Chem. 2006, 2132–2135. (c) Wu, T.; Zhou, R.; Li, D. Inorg. Chem.
Supporting Information Available: Crystallographic data files
(CIF), the synthesis of ligands, the conformation of ligands (Figure
S1), the XRPD diagram for complexes 1-7 (Figure S2), TGA plots
for all complexes (Figure S3), hydrogen bonds for 1 (Table S1) and 3
(Table S2). This information is available free of charge via the
ꢀ
Commun. 2006, 9, 341–345. (d) Rodríguez-Dieguez, A.; Salinas-
ꢀ
Castillo, A.; Galli, S.; Masciocchi, N.; Gutierrez-Zorrilla, J. M.; Vitoria,
P.; Colacio, E. Dalton Trans. 2007, 1821–1828.
(15) (a) Li, J.-R.; Tao, Y.; Yu, Q.; Bu, X.-H.; Sakamoto, H.; Kitagawa,
S. Chem.;Eur. J. 2008, 14, 2771–2776. (b) Li, J.-R.; Tao, Y.; Yu, Q.;