arises from the relatively relaxed ring sizes present in 1 and
the fact that the ring-opened amino acid corresponding to
this structure is destabilized by transannular interactions.
However, the amide bond in 1 is substantially distorted from
planarity and the lactam displays reactivity that belies this
nature.6
solution to the problem of one-carbon bridged twisted amide
synthesis (Scheme 1).
Scheme 1. RCM/Cyclization Strategy
In general, existing synthetic approaches to one-carbon
bridged twisted amides are limited to particular structural
types9 and do not allow for synthesis of larger number of
diverse analogues.10 There is no general method of synthesis
of one-carbon bridged twisted amides. The observation that
lactams 1 can reform in water once hydrolyzed, plus the rich
history of transannular cyclizations in synthesis11 (including
limited precedent from the twisted amide chemistry),12
suggested that such ring systems might be accessible using
a direct cyclization approach. Although only limited prece-
dent supported the synthesis of medium-ring nitrogen-
containing heterocycles with appropriately placed amine and
carboxylic acid derivative functionalities,13 we believed that,
if successful, RCM would allow for rapid construction of
diverse precursors to the key cyclization.14 Herein, we report
the realization of these ideas to provide a highly general
Our initial investigations focused on the preparation of
the [4.3.1] bicyclic ring system previously studied in this
laboratory.5,6,8b Thus, malonate 2a was prepared and sub-
jected to range of RCM conditions. After extensive experi-
mentation, it was found that Hoveyda-Grubbs 2 catalyst15
Table 1. Optimization of RCM
(4) Greenberg, A., In The Amide Linkage: Structural Significance in
Chemistry, Biochemistry, and Materials Science; Greenberg, A., Breneman,
C. M., Liebman, J. F., Ed.; Wiley-Interscience: New York, 2000; p 78.
(5) Szostak, M.; Yao, L.; Aubé, J. J. Org. Chem. 2009, 74, 1869.
(6) Lei, Y.; Wrobleski, A. D.; Golden, J. E.; Powell, D. R.; Aubé, J.
J. Am. Chem. Soc. 2005, 127, 4552.
entry diene (P) catalyst mol (%) T (°C) time (h) yielda (%)
(7) (a) Tani, K.; Stoltz, B. M. Nature 2006, 441, 731. (b) Somayaji, V.;
Brown, R. S. J. Org. Chem. 1986, 51, 2676.
1
2
3
4
5
6
7
8
9
Ts (2a)
Ts (2a)
Ts (2a)
Ts (2a)
Ts (2a)
Ts (2a)
Ts (2a)
Ts (2a)
Ts (2a)
G1
100
50
20
50
20
5
5
5
5
5
40
24
40
40
80
80
80
80
80
80
80
80
80
26
25
22
21
21
21
21
21
8
87
54
41
43
76
72
69
81
(8) (a) Williams, R. M.; Lee, B. H.; Miller, M. M.; Anderson, O. P.
J. Am. Chem. Soc. 1989, 111, 1073. (b) Yao, L.; Aubé, J. J. Am. Chem.
Soc. 2007, 129, 2766.
Fu¨rstner
Fu¨rstner
G2
(9) For previous examples of one-carbon medium-bridged amides, see:
(a) Refs 5 and 8. (b) Arata, Y.; Kobayashi, T. Chem. Pharm. Bull. 1972,
20, 325. (c) Schill, G.; Priester, C. U.; Windhovel, U. F.; Fritz, H.
Tetrahedron 1987, 43, 3747.
G2
G2
G2c
(10) Failed approaches to one-carbon bridged amides include a variety
of strategies. Amide coupling reactions: (a) Ref 9c. Intramolecular SN2
displacement: (b) Smissman, E. E.; Wirth, P. J.; Abernethy, D.; Ayres, J. W.
J. Org. Chem. 1972, 37, 3486. (c) Smissman, E. E.; Ayres, J. W. J. Org.
Chem. 1971, 36, 2407. (d) Smissman, E. E.; Robinson, R. A.; Matuszak,
A. J. J. Org. Chem. 1970, 35, 3823. (e) Brouillette, W. J.; Friedrich, J. D.;
Muccio, D. D. J. Org. Chem. 1984, 49, 3227. Selenium-mediated electro-
philic cyclization: (f) Toshimitsu, A.; Terao, K.; Uemura, S. Tetrahedron
Lett. 1984, 25, 5917. (g) Toshimitsu, A.; Terao, K.; Uemura, S. J. Org.
Chem. 1987, 52, 2018. Claisen condensation: (h) Smissman, E. E.; Wirth,
P. J.; Glynn, D. R. J. Org. Chem. 1975, 40, 281. Direct RCM: (i) Doodeman,
R. University of Amsterdam, 2002. (j) Preston, A. J.; Gallucci, J. C.;
Paquette, L. A. J. Org. Chem. 2006, 71, 6573. (k) Lei, Y. University of
Kansas, 2006 (bond isomerization was observed rather than formation of
strained twisted amides). [2 + 2] cycloaddition: (l) Booker-Milburn, K. I.;
Anson, C. E.; Clissold, C.; Costin, N. J.; Dainty, R. F.; Murray, M.; Patel,
D.; Sharpe, A. Eur. J. Org. Chem. 2001, 8, 1473. Oxidative coupling: (m)
Szostak, M.; Aube´, J. Unpublished results.
HG2
HG2d
HG2e
87b
95b
93b
85b
89b
10 Ts (2a)
8
11 Ns (2b) HG2d
12 Boc (2c) HG2d
13 Cbz (2d) HG2e
5
5
5
16
17
8
a Determined by 1H NMR. b Isolated yields. c With Ti(O-i-Pr)4. d Argon
bubbled through the reaction. e Open to air. G1 ) Grubbs catalyst 1, G2 )
Grubbs catalyst 2, Fu¨rstner ) Fu¨rstner catalyst, HG2 ) Hoveyda-Grubbs
catalyst 2. RCM ) ring-closing metathesis. Ns ) 2-nitrobenzenesulfonyl.
Cbz ) carbobenzyloxy.
most effectively led to the 9-membered heterocycle 3a (Table
1). Use of these conditions allowed synthesis of a series of
analogues containing various amine substitutions, including
(11) For pioneering work, see: (a) Leonard, N. J.; Fox, R. C.; Oki, M.;
Chiavarelli, S. J. Am. Chem. Soc. 1954, 76, 630. For selected examples
from the recent literature, see: (b) Balskus, E. P.; Jacobsen, E. N. Science
2007, 317, 1736. (c) Chandler, C. L.; List, B. J. Am. Chem. Soc. 2008,
130, 6737. (d) Vital, P.; Hosseini, M.; Shanmugham, M. S.; Gotfredsen,
C. H.; Harris, P.; Tanner, D. Chem. Commun. 2009, 14, 1888.
(12) (a) Reference 9c. (b) Bashore, C. G.; Samardjiev, I. J.; Bordner,
J.; Coe, J. W. J. Am. Chem. Soc. 2003, 125, 3268.
(14) For selected reviews, see: (a) Phillips, A. J.; Abell, A. D. Aldrichim.
Acta 1999, 32, 75. (b) Fu¨rstner, A. Angew. Chem., Int. Ed. 2000, 39, 3013.
(c) Deiters, A.; Martin, S. F. Chem. ReV. 2004, 104, 2199. (d) Chatto-
padhyay, S. K.; Karmakar, S.; Biswas, T.; Majumdar, K. C.; Rahaman, H.;
Roy, B. Tetrahedron 2007, 63, 3919. (e) Compain, P. AdV. Synth. Catal.
2007, 349, 1829.
(13) For reviews, see: (a) Maier, M. E. Angew. Chem., Int. Ed. 2000,
39, 2073. (b) Nubbemeyer, U. Top. Curr. Chem. 2001, 216, 125. (c)
Michaut, A.; Rodriguez, J. Angew. Chem., Int. Ed. 2006, 45, 5740. For
selected approaches from the recent literature, see: (d) Kan, T.; Fujiwara,
A.; Kobayashi, H.; Fukuyama, T. Tetrahedron 2002, 58, 6267. (e) David,
O.; Meester, W. J. N.; Bieraugel, H.; Schoemaker, H. E.; Hiemstra, H.;
van Maarseveen, J. H. Angew. Chem., Int. Ed. 2003, 42, 4373. (f) Klapars,
A.; Parris, S.; Anderson, K. W.; Buchwald, S. L. J. Am. Chem. Soc. 2004,
126, 3529.
(15) For a review, see: (a) Hoveyda, A. H.; Gillingham, D. G.; Van
Veldhuizen, J. J.; Kataoka, O.; Garber, S. B.; Kingsbury, J. S.; Harrity,
J. P. A. Org. Biomol. Chem. 2004, 2, 8. For recent examples of the use of
Hoveyda-Grubbs catalysts in demanding RCM reactions, see: (b) Brown,
M. K.; Hoveyda, A. H. J. Am. Chem. Soc. 2008, 130, 12904. (c) Farina,
V.; Shu, C.; Zeng, X.; Wei, X.; Han, Z.; Yee, N. K.; Senanayake, C. H.
Org. Process Res. DeV. 2009, 13, 250.
Org. Lett., Vol. 11, No. 17, 2009
3879