Journal of the American Chemical Society
Page 4 of 5
ASSOCIATED CONTENT
1
2
3
4
Supporting Information. Experimental procedures and spectral
and analytical data for all products. This material is available free
(5) For a recent review on metal-catalyzed hydroamination, see:
Huang, L.; Arndt, M.; Gooßen, K.; Heydt, H.; Gooßen, L. J. Chem.
Rev. 2015, 115, 2596–2697.
(
6
) Goldfogel, M. J.; Roberts, C. C.; Meek, S. J. J. Am. Chem. Soc.
2014, 136, 6227–6230.
) For review of carbon-based ligands that includes carbon(0) do-
AUTHOR INFORMATION
5
6
7
8
9
Corresponding Author
(7
nors, see: (a) Melaimi, M.; Soleilhavoup, M.; Bertrand, G. Angew.
Chem. Int. Ed. 2010, 49, 8810–8849. For selected examples of car-
bon(0) ligands, see: (b) Dyker, C. A.; Lavallo, V.; Donnadieu, B.;
Bertrand, G. Angew. Chem. Int. Ed. 2008, 47, 3206–3209. (c) Lavallo,
V.; Dyker, C. A.; Donnadieu, B.; Bertrand, G. Angew. Chem. Int. Ed.
2008, 47, 5411–5414. (d) Melaimi, M.; Parameswaran, P.; Don-
nadieu, B.; Frenking, G.; Bertrand, G. Angew. Chem. Int. Ed. 2009,
48, 4792–4795.
(8) Frenking, G.; Tonner, R. Carbodicarbenes in Contemporary
Carbene Chemistry; Moss, R. A., Doyle, M. P. Eds.; John Wiley &
Sons: Hoboken, New Jersey, 2014; pp 216–236.
(9) (a) Vicente, J.; Singhal, A. R.; Jones, P. G. Organometallics
2002, 21, 5887–5900. (b) Alcarazo, M.; Lehmann, C. W.; Anoop, A.;
Thiel, W.; Fürstner, A. Nature Chem. 2009, 1, 295–301. (c) Reitsa-
mer, C.; Schuh, W.; Kopacka, H.; Wurst, K.; Peringer, P. Organome-
tallics 2009, 28, 6617–6620. (d) Alcarazo, M.; Radkowski, K.;
Mehler, G.; Goddard, R.; Fürstner, A. Chem. Commun. 2013, 49,
3140.
Notes
Authors declare no competing financial interests.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ACKNOWLEDGMENT
Financial support was provided by the University of North Caro-
lina at Chapel Hill, the Petroleum Research Fund of the American
Chemical Society (52447-DNI1), and an Eli Lilly New Faculty
Award. C.C.R. is an NSF graduate research fellow. We are
grateful to M. Joannou (UNC) for helpful discussions and assis-
tance solving the X-ray structure of Rh complex 5.
REFERENCES
(1) For a recent review of catalytic additions to C–C multiple
bonds, see: (a) Zeng, X. Chem. Rev. 2013. 113, 6864–6900. For re-
views on catalytic hydroarylation, see: (b) Andreatta, J. R.; McKe-
own, B. A.; Gunnoe, T. B. J. Organomet. Chem. 2011, 696, 305–315.
(c) de Mendoza, P.; Echavarren, A. M. Pure Appl. Chem. 2010, 82,
801–820.
(
10) Petz, W. Coord. Chem. Rev. 2015, 291, 1–27.
(
11) For an example of increased metal catalyst activity caused by
a Lewis acid co-catalyst, see: Hartmann, R.; Chen, P. Angew. Chem.
Int. Ed. 2001, 40, 3581–3585.
(12) For a review on the catalytic functionalizations of indoles, see:
Bandini, M.; Eichholzer, A. Angew. Chem. Int. Ed. 2009, 48, 9608–
9644.
(2) For examples of metal-catalyzed C–H activation/intermolecular
hydroarylation, see: (a) Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002,
35, 826–834. (b) Schipper, D. J.; Hutchinson, M.; Fagnou, K. J. Am.
Chem. Soc. 2010, 132, 6910–6911. (c) Nakao, Y.; Kashihara, N.;
Kanyiva, K. S.; Hiyama, T. Angew. Chem. Int. Ed. 2010, 49, 4451–
4454. (d) Sevov, C. S.; Hartwig, J. F. J. Am. Chem. Soc. 2013, 135,
2116–2119. (e) Bair, J. S.; Schramm, Y.; Sergeev, A. G.; Clot, E.;
Eisenstein, O.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 13098–
13101. (f) Crisenza, G. E. M.; McCreanor, N. G.; Bower, J. F. J. Am.
Chem. Soc. 2014, 136, 10258–10261.
(13) See supporting information.
(14) Lithium NHC and carbon(0) complexes have been isolated
and characterized by X-ray crystallography, see: NHC: (a) Willans, C.
E. Organomet. Chem. 2010; Vol. 36, pp. 1–28. Carbon(0): see ref. 7c.
(15) For control reactions with HBF4, 2,6-ditert-butyl-pyridine, and
trityl-BArF , see supporting information.
4
(
16) Wang, M.-Z.; Wong, M.-K.; Che, C.-M. Chem. Eur. J. 2008,
14, 8353–8364.
17) The C=C bond length in styrene is 1.3245 A, see: Yasuda, N.;
(3) For examples of metal-catalyzed hydroarylation with preformed
(
aryl organometallic reagents, see: (a) Liao, L.; Sigman, M. S. J. Am.
Chem. Soc. 2010, 132, 10209–10211. (b) So, C. M.; Kume, S.;
Hayashi, T. J. Am. Chem. Soc. 2013, 135, 10990–10993.
Uekusa, H.; Ohashi, Y. Acta Cryst. 2001, E57, 1189-1190.
(18) Rh-catalyzed hydroarylation of 1 with of 5 mol % HBF4-OEt2
as an additive (Et2O, 50 °C, 24 h) results in 82% conversion to 3,
(>98:2 γ:α). Hydroarylation of diene 1 with 5 mol % HBF4-OEt2 in
the absence (CDC)-Rh 5 (50 °C, Et2O 24 h) results in <2% conversion
to 3 and decomposition of diene 1.
(4) For examples of metal-catalyzed intermolecular hydroarylation
via C=C bond activation, see: (a) Kischel, J.; Jovel, I.; Mertins, K.;
Zapf, A.; Beller, M. Org. Lett. 2006, 8, 19–22. (b) Rueping, M.;
Nachtsheim, B. J.; Scheidt, T. Org. Lett. 2006, 8, 3717–3719. (c) Sun,
H.-B.; Li, B.; Hua, R.; Yin, Y. Eur. J. Org. Chem. 2006, 4231–4236.
(d) Zhang, Z.; Wang, X.; Widenhoefer, R. A. Chem. Commun. 2006,
3717. (e) Wang, M.-Z.; Wong, M.-K.; Che, C.-M. Chem. Eur. J.
2008, 14, 8353–8364. (f) Toups, K. L.; Liu, G. T.; Widenhoefer, R.
A. J. Organomet. Chem. 2009, 694, 571–575. (g) Tarselli, M. A.; Liu,
A.; Gagné, M. R. Tetrahedron 2009, 65, 1785–1789. (h) Xiao, Y.-P.;
Liu, X.-Y.; Che, C.-M. J. Organomet. Chem. 2009, 694, 494–501. (i)
Hu, X.; Martin, D.; Melaimi, M.; Bertrand, G. J. Am. Chem. Soc.
2014, 136, 13594–13597.
(
19) (a) Eisenstein, O.; Hoffmann, R. J. Am. Chem. Soc. 1980, 102,
6148–6149. (b) Eisenstein, O.; Hoffmann, R. J. Am. Chem. Soc. 1981,
103, 4308–4320.
(
20) For application of carbon(0) ligands in transition-metal cataly-
sis, see: (a) Corberán, R.; Marrot, S.; Dellus, N.; Merceron-Saffon,
N.; Kato, T.; Peris, E.; Baceiredo, A. Organometallics 2009, 28, 326–
330. (b) Hsu, Y.-C.; Shen, J.-S.; Lin, B.-C.; Chen, W.-C.; Chan, Y.-
T.; Ching, W.-M.; Yap, G. P. A.; Hsu, C.-P.; Ong, T.-G. Angew.
Chem. Int. Ed. 2014, 54, 2420–2424. (c) Pranckevicius, C.; Fan, L.;
Stephan, D. W. J. Am. Chem. Soc. 2015, 137, 5582–5589.
ACS Paragon Plus Environment