allowing for the efficient construction of relatively complex
organoamine frameworks in as few as one reaction vessel.
Our results emphasize that Pd-mediated decarboxylation is
a mild and versatile strategy for the generation and deriva-
tization of stabilized R-imino anions.
As an initial assessment of the capability of arylidene
malononitriles to act as electrophilic interceptors in the DcA
of allyl diphenylglycinate imines, a solution of imine 1a (1.0
equiv) and alkene 2a (1.1 equiv) was subjected to our
standard DcA reaction conditions (10 mol % Pd(PPh3)4,
MeCN, 20 °C).7c Gratifyingly, the intercepted DcA product
3aa was generated quantitatively as a roughly 1:1 ratio of
diatereomers (Table 1, entry 1). The transformation proved
presence of water does not significantly impact the trans-
formation (Table 1, entry 6). This stands in marked contrast
to the 2-azaallyllithium dipolar nucleophiles described by
Kauffmann12 and Pearson.13
Inspired by these results, we next investigated the scope
of the electrophiles and imines (1, R1). Arylidene malono-
nitriles bearing electron-rich (2c and 2d) or electron-deficient
(2b and 2e) aromatic R2-groups, as well as heteroaromatics
(2f), were successfully incorporated into the DcA of imine
1a, providing the corresponding allylated products 3 in high
yield (Table 2, entries 2-6). The branched aliphatic i-Pr
substituent (2g) also was effective (Table 2, entry 7) The
bulkier t-Bu substrate 2h, however, was a much poorer
intercepting electrophile. Geminal dinitrile 3ah was isolated
in low yield with the non-intercepted DcA product 6 (R1 )
4-CN-Ph, Figure 1) comprising the remainder of converted
starting material. For all other alkylidene malononitriles
(Table 2, entries 1-7 and 9-12), homoallylic imines 6 were
detected in, at most, trace quantities. The results obtained
by variation of the imine R1 group mirrored our previous
non-intercepted DcA studies.7c Specifically, electron-with-
drawing aromatic (1a and 1b) and heteroaromatic (1d)
substituents afforded a single regioisomer. Alternatively, the
electron-donating p-methoxybenzaldimine 1c provided a 5:1
ratio of regioisomeric products 3ca:7 in 95% combined yield;
imine 7 selectively hydrolyzed on silica gel, thus facilitating
purification of the other regioisomer (Figure 1). While no
diastereoselectivity was observed for the intercepted DcA
of imino esters 1 with alkenes 2, the majority of product (3)
diastereomeric mixtures could be resolved via standard
chromatographic means.
Table 1. Solvent Studies for the Intercepted DcA
entry
solvent
MeCN
2-Me-THF
PhCH3
product dr (syn:anti)a isolated yield
1
2
3
4
3aa
3aa
3aa
3aa
3aa
3ac
1.0:1.2
1.0:1.4
1.0:1.1
1.0:1.1
1.0:1.1
1.0:1.2
99%
99%
89%
97%
95%
86%d
DMF
5
CH2Cl2
6b
PhCH3:H2Oc
a Determined by 1H NMR analysis of the unpurified reaction mixtures.
b Alkene 2c was used. c 10 mol % of (-)-O-9-allyl-N-(9-anthracenylmeth-
yl)cinchondium bromide added as a phase-transfer catalyst. d 88% with
MeCN as solvent.
To further explore the electrophile scope, arylidene Mel-
drum’s acid derivatives 4 also were investigated as intercept-
ing agents (Table 2, entries 13-17). Alkenes 4 proved to be
weaker electrophiles than their malononitrile counterparts 2;
significant quantities (e20%) of the homoallylic imine 6 (R1
) 4-CN-Ph) were produced in competition with interception
products 5. Interestingly, the 2-furanyl alkene 4e severely
deactivated the Pd(0) catalyst, resulting in very slow conver-
sion of imine 1a to either 5ae or 6 (Table 2, entry17). Unlike
highly independent of the reaction medium; nearly identical
yields and diastereomeric ratios were obtained employing a
variety of solvents (Table 1). Despite the relatively high
basicity of the putative R-imino anion intermediate, the
(4) (a) Tunge, J. A.; Burger, E. C. Eur. J. Org. Chem. 2005, 1715. (b)
Imao, D.; Itio, A.; Yamazaki, A.; Shirakura, M.; Ohtoshi, R.; Ogata, K.;
Ohmori, Y.; Ohta, T.; Ito, Y. J. Org. Chem. 2007, 72, 1652. (c) Waetzig,
S. R.; Tunge, J. A. J. Am. Chem. Soc. 2007, 129, 4138. (d) Waetzig, S. R.;
Tunge, J. A. J. Am. Chem. Soc. 2007, 129, 14860. (e) Waetzig, S. R.;
Rayabarapu, D. K.; Weaver, J. D.; Tunge, J. A. Angew. Chem., Int. Ed.
2006, 45, 4977. (f) Burger, E. C.; Tunge, J. A. J. Am. Chem. Soc. 2006,
128, 10002. (g) Weaver, J. D.; Tunge, J. A. Org. Lett. 2008, 10, 4657. (h)
Sim, S. H.; Park, H.-J.; Lee, S. I.; Chung, Y. K. Org. Lett. 2008, 10, 433.
Asymmetric variants: (i) Trost, B. M.; Bream, R. N.; Xu, J. Angew. Chem.,
Int. Ed. 2006, 45, 3109. (j) Burger, E. C.; Tunge, J. A. Org. Lett. 2004, 6,
4113. (k) Mohr, J. T.; Behanna, D. C.; Harned, A. M.; Stoltz, B. M. Angew.
Chem., Int. Ed. 2005, 44, 6924. (l) You, S.-L.; Dai, L.-X. Angew. Chem.,
Int. Ed. 2006, 45, 5246.
(7) (a) Nokami, J.; Watanabe, H.; Mandai, T.; Kawada, M.; Tsuji, J.
Tetrahedron Lett. 1989, 30, 4829. (b) Wang, C.; Tunge, J. A. Org. Lett.
2005, 7, 2137. (c) Yeagley, A. A.; Chruma, J. J. Org. Lett. 2007, 9, 2879.
(d) Wang, C.; Tunge, J. A. J. Am. Chem. Soc. 2008, 130, 8118. (e) Shintani,
R.; Murakami, M.; Hayashi, T. Org. Lett. 2009, 11, 457.
(8) For a very recent exception: Pi, S.-F.; Tang, B.-X.; Li, J.-H.; Liu,
Y.-L.; Liang, Y. Org. Lett. 2009, 11, 2309.
(9) CAUTION: Many arylidenemalononitriles are powerful irritants and
should be handled in a well-ventilated fume hood!
(10) For a related Ru-catalyzed intercepted DcA of ꢀ-ketoesters: Wang,
(5) Recent applications in natural product total synthesis: (a) Enquist,
J. A., Jr.; Stoltz, B. M. Nature 2008, 453, 1228. (b) White, D. E.; Stewart,
I. C.; Grubbs, R. H.; Stoltz, B. M. J. Am. Chem. Soc. 2008, 130, 810. (c)
McFadden, R. M.; Stoltz, B. M. J. Am. Chem. Soc. 2006, 128, 7738.
(6) (a) Shim, J.-G.; Nakamara, H.; Yamamoto, Y. J. Org. Chem. 1998,
63, 8470. (b) Nakumura, H.; Shibata, H.; Yamamoto, Y. Tetrahedron Lett.
2000, 41, 2911. (c) Aoyagi, K.; Nakamura, H.; Yamamoto, Y. J. Org. Chem.
2002, 67, 5977. (d) Shim, J.-G.; Park, J. C.; Cho, C. S.; Shim, S. C.;
Yamamoto, Y. Chem. Commun. 2002, 852. (e) Patil, N. T.; Hou, Z.;
Yamamoto, Y. J. Org. Chem. 2006, 71, 6991. (f) Patil, N. T.; Hou, Z.;
Yamamoto, Y. J. Org. Chem. 2006, 71, 2503. (g) Patil, N. T.; Yamamoto,
Y. Synlett 2007, 1994. (h) Yoshikawa, E.; Radhakrishnan, K. V.; Yamamoto,
Y. Tetrahedron Lett. 2000, 41, 729.
C.; Tunge, J. A. Org. Lett. 2005, 7, 2137.
(11) (a) Heck, R. F. Acc. Chem. Res. 1979, 12, 146. (b) Mizoroki, T.;
Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971, 44, 581.
(12) (a) Kauffmann, T.; Berg, H.; Koppelmann, E.; Kuhlmann, D. Chem.
Ber. 1977, 110, 2659. (b) Kauffmann, T.; Eidenschink, R. Angew. Chem.,
Int. Ed. Engl. 1971, 10, 739. (c) Kauffmann, T.; Ko¨ppelmann, E. Angew.
Chem., Int. Ed. Engl. 1972, 11, 290. (d) Kauffmann, T.; Busch, A.;
Habersaat, K.; Ka¨ppelmonn, E. Angew. Chem., Int. Ed. Engl. 1973, 12,
568. (e) Kauffmann, T.; Ahlers, H.; Hamsen, A.; Schulz, H.; Tilhard, H.-
J.; Vahrenhorst, A. Angew. Chem., Int. Ed. Engl. 1977, 16, 119, references
therein.
(13) (a) Pearson, W. H.; Stoy, P. Synlett 2003, 7, 903. (b) Pearson, W. H.
Pure Appl. Chem. 2002, 74, 1339, and references therein.
Org. Lett., Vol. 11, No. 17, 2009
4023