A. Paul et al. / Tetrahedron 65 (2009) 6156–6168
6167
4.11.3. 5-((S)-1-Acetylpyrrolidin-2-ylmethyl)-3H-1,2,3-triazole-4-
carboxylic acid ethyl ester (19)
A solution of compound 18a (13.7 mg, 0.042 mmol) in CH2Cl2
(1.5 mL) was reacted with TFA (0.5 mL) for 45 min. Acetylation:
and allowed to ride on their corresponding carbon atoms. The
isotropic displacement parameters of all hydrogen atoms were tied
to those of the adjacent carbon atoms by a factor of 1.5.
C12H21N5O4, triclinic, P-1 (no. 2), a¼6.1775(3), b¼10.8036(6),
DIPEA (9
CH2Cl2 (1.0 mL) for 5 h and after evaporation of the solvent again
with DIPEA (18 L, 0.170 mmol) and acetyl chloride (15 L,
mL, 0.084 mmol) and acetyl chloride (3
mL, 0.063 mmol) in
c¼12.8540(9) Å,
a
¼74.855(4)ꢁ,
b
¼88.887(4)ꢁ,
g
¼76.713(4)ꢁ,
V¼805.15(8) Å3, Z¼2, rcalcd¼1.235 Mg/m3,
m
(Mo K
a
)¼0.094 mmꢀ1
,
m
m
F(000)¼320, 17,856 reflections collected, 3541 independent re-
0.326 mmol) in CH2Cl2 (1.0 mL) for 3.5 h. Flash column chroma-
flections, 2701 observed reflection [I>2
s
(I)], R1[I>2
s
(I)]¼0.0463,
tography (CH2Cl2/MeOH 95:5) furnished 4.4 mg (62%) of 19 as
wR2 (all data)¼0.1140, GooF (all data)¼1.147, Drmax/min¼0.252/
25
a colorless solid. Mp 129–131 ꢁC; Rf 0.38 (CH2Cl2/MeOH 9:1); [
a
]
ꢀ0.268 e Åꢀ3
.
D
ꢀ4.0 (c 0.25, MeOH); IR (neat) 3103, 2980, 2276, 2102, 1732, 1717,
1652, 1634, 1608 cmꢀ1 1H NMR (600 MHz, CDCl3/DMSO-d6
97.5:2.5; cis/trans rotamers were observed)
1.39 (t, J¼7.2 Hz, 3H,
CCDC-724534 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
;
d
OCH2CH3), 1.71–2.01 (m, 4H, H-3/H-4 pyrrolidine), 2.06 (s, 1.8H,
acetyl CH3trans), 2.11 (s, 1.2H, acetyl CH3cis), 3.06–3.12, 3.16–3.26,
3.34–3.49, 3.46–3.54 and 3.61–3.66 (5ꢂm, 4H, CH2–triazole/H-5
pyrrolidine), 4.21–4.28 (m, 0.4H, H-2 pyrrolidinecis), 4.39 (q, 2H,
J¼7.2 Hz, OCH2), 4.44–4.50 (m, 1H, H-2 pyrrolidinetrans); 13C NMR
Acknowledgements
This work was supported by the Deutsche For-
schungsgemeinschaft (DFG). Iris Torres and Michaela Kettler are
acknowledged for skillful technical assistance.
(90 MHz, CDCl3; cis/trans rotamers were observed)
d 14.3 (ester
CH3), 21.8 (acetyl CH3cis), 22.8 (acetyl CH3trans), 23.6 (C-4 pyrroli-
dine), 27.7 (CH2–triazole), 29.9 and 30.3 (C-3 pyrrolidine), 45.6 and
48.0 (C-5 pyrrolidine), 56.8 and 57.8 (C-2 pyrrolidine), 61.0 (OCH2),
135.7 (br, triazole C-5), 140.7 (br, triazole C-4), 162.2 (ester C]O),
170.0 and 171.2 (amide C]O); EIMS 266 (Mþ); HRMS calcd for
C12H18N4O3 266.1379; found 266.1376.
Supplementary data
Copies of 1H and 13C NMR spectra of compounds 5a,b; 8a,b;
15a,b; 16; 18a,b; 25,a,b; 10; 15c, 20; 11; 21; 27a,b; 9; 12; 19; 22
including selective NOE spectra (DPFGSE pulse sequence) for 9; 12;
19; 22 as well as details of the X-ray crystal structure determination
of 16 in CIF format. Supplementary data associated with this article
4.11.4. 5-((S)-1-Acetylpyrrolidin-2-ylmethyl)-3H-1,2,3-triazole-4-
carboxylic acid methylamide (22)
A solution of compound 21 (12.0 mg, 0.039 mmol) in CH2Cl2
(2.0 mL) was reacted with TFA (0.5 mL) for 25 min. Acetylation:
DIPEA (13 mL, 0.079 mol) and acetyl chloride (5.0 mL, 0.071 mmol) in
CH2Cl2 (1.0 mL) for 5 h, the same procedure was repeated for 4 h.
Flash column chromatography (CH2Cl2/MeOH 95:5) furnished
References and notes
3.8 mg (39%) of 22 as a colorless resin/solid. Mp 65–67 ꢁC; Rf 0.41
1. Hruby, V. J. Drug Discov. Today 1997, 2, 165–167 and references cited therein.
2. Giannis, A.; Kolter, T. Angew. Chem. 1993, 105, 1303–1326; Angew. Chem., Int. Ed.
Engl. 1993, 32, 1244–1267.
24
(CH2Cl2/MeOH 9:1); [
a
]
D
þ1.7 (c 0.33, MeOH); IR (neat) 3421, 3330,
3102, 2974, 2243, 1647, 1556, 1543 cmꢀ1; 1H NMR (360 MHz, CDCl3,
only the trans rotamer was observed) 1.84–2.09 (m, 3H, H-3/H-4
3. For recent reviews and articles see: (a) Cluzeau, J.; Lubell, W. D. Biopolymers
(Pept. Sci.) 2005, 80, 98–150; (b) Maison, W.; Prenzel, A. H. G. P. Biopolymers
2005, 7, 1031–1048; (c) Hanessian, S.; McNaughton-Smith, G.; Lombart, H.-G.;
Lubell, W. D. Tetrahedron 1997, 53, 12789–12854; (d) Freidinger, R. M. J. Med.
Chem. 2003, 46, 5553–5566; (e) Halab, L.; Gosselin, F.; Lubell, W. D. Biopolymers
(Pept. Sci.) 2000, 55, 101–122; (f) Hoffmann, T.; Waibel, R.; Gmeiner, P. J. Org.
Chem. 2003, 68, 62–69; (g) Weber, K.; Ohnmacht, U.; Gmeiner, P. J. Org. Chem.
2000, 65, 7406–7416; (h) Hoffmann, T.; Lanig, H.; Waibel, R.; Gmeiner, P. Angew.
Chem. 2001, 113, 3465–3468; Angew. Chem., Int. Ed. 2001, 40, 3361–3364; (i)
Bittermann, H.; Gmeiner, P. J. Org. Chem. 2006, 71, 97–102; (j) Bittermann, H.;
Boeckler, F.; Einsiedel, J.; Gmeiner, P. Chem.dEur. J. 2006, 24, 6315–6322; (k)
Lomlim, L.; Einsiedel, J.; Heinemann, F. W.; Meyer, K.; Gmeiner, P. J. Org. Chem.
2008, 73, 3608–3611; (l) Einsiedel, J.; Lanig, H.; Waibel, R.; Gmeiner, P. J. Org.
Chem. 2007, 72, 9102–9113.
4. Angelo, N. G.; Arora, P. S. J. Am. Chem. Soc. 2005, 127, 17134–17135.
5. (a) Van Maarseveen, J. H.; Seth Horne, W.; Reza Ghadiri, M. Org. Lett. 2005, 7,
4503–4506; (b) Bock, V. D.; Perciaccante, R.; Paul Jansen, T.; Hiemstra, H.; Van
Maarseveen, J. H. Org. Lett. 2006, 8, 919–922; (c) Hu, T.-S.; Tannert, R.; Arndt, H.-D.;
Waldmann, H. Chem. Commun. 2007, 3942–3944; (d) Turner, R. A.; Oliver, A. G.;
Lokey, R. S. Org. Lett. 2007, 9, 5011–5014.
d
pyrrolidine), 2.11–2.27 (m, 1H, H-3 or H-4 pyrrolidine), 2.17 (s, 3H,
acetyl CH3), 2.99 and 3.01 (2ꢂd, each J¼4.8 Hz, 3H, NCH3), 3.28 (dd,
J¼15.1, 5.4 Hz, 1H, CH2–triazole), 3.47 (ddd, J¼10.1, 9.9, 7.7 Hz, 1H,
H-5 pyrrolidine), 3.48–3.56 (m, 1H, CH2–triazole), 3.59 (ddd, 10.1,
8.7, 2.6 Hz, 1H, H-5 pyrrolidine), 4.27–4.55 (m, 1H, H-2 pyrrolidine),
7.13 and 7.24 (2ꢂbr s, 1H, CONH), 15.18 (br s, 1H, triazole NH); 13C
NMR (90 MHz, CDCl3)
d 22.8, 23.7, 25.6, 28.3 and 29.7 (acetyl CH3,
NCH3, CH2–triazole, C-4 pyrrolidine), 30.6 (C-3 pyrrolidine), 48.0
(C-5 pyrrolidine), 56.8 (C-2 pyrrolidine), 137.5 (br, triazole C-5),
162.2 (br, amide), for the determination of the triazole C-4 the
amount of substance was insufficient; HRMS calcd for C11H17N5O2
251.1382; found 251.1383.
4.12. X-ray crystal structure determination of 16
6. (a) Angell, Y. L.; Burgess, K. Chem. Soc. Rev. 2007, 36, 1674–1689; (b) Franke, R.;
Doll, C.; Eichler, J. Tetrahedron Lett. 2005, 46, 4479–4482; (c) Zhang, Z.; Fan, E.
Tetrahedron Lett. 2006, 47, 665–669; (d) Tornøe, C. W.; Christensen, C.; Meldal,
M. J. Org. Chem. 2002, 67, 3057–3064; (e) Tam, A.; Arnold, U.; Soellner, M. B.;
Raines, R. T. J. Am. Chem. Soc. 2007, 129, 12670–12671.
A colorless needle of approximately 0.30ꢂ0.08ꢂ0.07 mm in size
was coated with protective perfluoropolyalkyl ether oil and
mounted in the cold nitrogen gas stream of a Bruker-Nonius Kap-
7. Paul, A.; Bittermann, H.; Gmeiner, P. Tetrahedron 2006, 62, 8919–8927 and
references cited therein.
paCCD diffractometer. Data were collected at 100 K using Mo K
a
8. McLaughlin, E. C.; Doyle, M. P. J. Org. Chem. 2008, 73, 4317–4319.
9. Sheehan, J. C.; Robinson, C. A. J. Am. Chem. Soc. 1951, 73, 1207–1210.
10. (a) Reginato, G.; Mordini, A.; Capperucci, A.; Degl’Innocenti, A.; Manganiello, S.
Tetrahedron 1998, 54, 10217–10226; (b) Reginato, G.; Mordini, A.; Degl’Innocenti,
A.; Caracciolo, M. Tetrahedron 1996, 52, 10985–10996; (c) Reginato, G.; Mordini,
A.; Messina, F.; Degl’Innocenti, A. Tetrahedron Lett. 1995, 36, 8275–8278; (d)
Cossy, J.; Cases, M.; Pardo, D. G. Bull. Soc. Chim. Fr. 1997, 134, 141–144.
11. Reetz, M. T.; Strack, T. J.; Kanand, J.; Goddard, R. Chem. Commun. 1996, 733–734.
12. Cheng, S.; Tarby, C. M.; Comer, D. D.; Williams, J. P.; Caporale, L. H.; Myers, P. L.;
Boger, D. Bioorg. Med. Chem. 1996, 4, 727–737.
radiation (graphite monochromator). Diffraction intensities were
corrected for Lorentz and polarization effects. A semi-empirical
absorption correction based on multiple measurements of re-
flections was applied (Tmin¼0.918, Tmax¼0.993).32 The structure
was solved by direct methods and refined by full-matrix least-
squares procedures on F2.33 All non-hydrogen atoms were refined
with anisotropic displacement parameters. The position of N5
bound hydrogen atom H5, which is involved in hydrogen bonding
was derived from a difference Fourier synthesis while all other
hydrogen atoms were placed in positions of optimized geometry
13. Bradbury, B. J.; Baumgold, J.; Jacobsen, K. A. J. Med. Chem. 1990, 33, 741–748.
14. Trybulski, E. J.; Benjamin, L.; Vitone, S.; Walser, A.; Fryer, R. I. J. Med. Chem. 1983,
26, 367–372.