Pourceau et al.
JOCArticle
together through a Huisgen 1,3-dipolar cycloaddition17
called “click chemistry”.18 This reaction was found to be
catalyzed by the Cu(I) ion,19,20 leading to fast reactions.
Hence, a wide range of applications for bioconjugation have
been reported (for reviews see refs 21-27). It is generally
considered that both alkyne and azide functions are mainly
orthogonal with other functionalities so that the click reac-
tion is chemoselective and can be performed in water and
organic solvents. Many publications reported the introduc-
tion of the alkyne function into ODN using phosphoramidite
derivatives of modified nucleosides on the nucleobases,28-31
on the sugar at the 20 position32,33 or on the phosphorus
atom,34 or using non-nucleosidic derivatives.34-45 Methods
to introduce propargyl function through a phosphoramidate
linkage were also described.15,16,46
FIGURE 1. Schematic structure of phosphoramidite derivative
1-3 and solid support 4 bearing a bromohexyl group (CE: 2-
cyanoethyl).
In contrast only a few publications showed the introduc-
tion of the azide function into an oligonucleotide still on the
solid support. The main reason is that it was shown that a
nucleoside with an azide function reacts with the phosphor-
amidite derivative according to the Staudinger reaction when
both compounds are in solution.47 Likewise, van der Marel
et al.33 showed more recently that a nucleoside exhibiting
both phosphoramidite and an azide function rapidly decom-
posed in solution. Thus to avoid this side reaction the azide
function was mainly introduced by a time-consuming post-
elongation protocol in solution.33,38,48 As an alternative
Kool et al. reported the 50-iodination and subsequent treat-
ment with sodium azide to gain 50-azido-oligonucleotide49
but this approach was restricted since deoxyadenosine led to
a side reaction during the iodination.50 Along this line, the
use of building blocks with a bromine-alkyl group was
developed and introduced automatically by a DNA synthe-
sizer into a sequence34,51or at the 50-end.36,52 The bromo
function was then converted to an azido upon treatment with
sodium azide leading to azide oligonucleotides. However,
very recently Lonnberg et al. showed that the azide function
can be introduced by a 40-azidomethyl-thymidine-30-H-
phosphonate derivative and then the oligonucleotide can
be elongated with either H-phosphonate or phosphoramidite
chemistry without observing the Staudinger reaction.53
(17) Huisgen, R. Angew. Chem., Int. Ed. 1963, 2, 565–598.
(18) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed.
2001, 40, 2004–2021.
(19) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem., Int. Ed. 2002, 41, 2596–2599.
(20) Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67,
3057–3064.
(21) Binder, W. H.; Sachsenhofer, R. Macromol. Rapid Commun. 2007,
28, 15–54.
(22) Bock, V. D.; Hiemstra, H.; van Maarseveen, J. H. Eur. J. Org. Chem.
2006, 2006, 51–68.
(23) Dedola, S.; Nepogodiev, S. A.; Field, R. A. Org. Biomol. Chem. 2007,
5, 1006–1017.
(24) Wu, P.; Fokin, V. V. Aldrichim. Acta 2007, 40, 7–17.
(25) Lutz, J. F. Angew. Chem., Int. Ed. 2007, 46, 1018–1025.
(26) Gramlich, P. M. E.; Wirges, C. T.; Manetto, A.; Carell, T. Angew.
Chem., Int. Ed. 2008, 47, 8350–8358.
(27) Meldal, M.; Tornoe, C. W. Chem. Rev. 2008, 108, 2952–3015.
(28) Seela, F.; Sirivolu, V. R. Chem. Biodiversity 2006, 3, 509–514.
(29) Seela, F.; Sirivolu, V. R. Helv. Chim. Acta 2007, 90, 535–552.
(30) Gramlich, P. M. E.; Warncke, S.; Gierlich, J.; Carell, T. Angew.
Chem., Int. Ed. 2008, 47, 3442–3444.
Results and Discussion
(31) Nakane, M.; Ichikawa, S.; Matsuda, A. J. Org. Chem. 2008, 73,
1842–1851.
This recent result prompted us to design a solid support
allowing the introduction of an azide function for subse-
quent 30-conjugation by Cu(I) alkyne/azide cycloaddition
(CuAAC) and also the cyclization of an oligonucleotide
bearing both 30-azide and 50-alkyne functions.
(32) Grotli, M.; Douglas, M.; Eritja, R.; Sproat, B. S. Tetrahedron 1998,
54, 5899–5914.
(33) Jawalekar, A. M.; Meeuwenoord, N.; Cremers, J. G. O.; Overkleeft,
H. S.; van der Marel, G. A.; Rutjes, F. P. J. T.; van Delft, F. L. J. Org. Chem.
2008, 73, 287–290.
(34) Lietard, J.; Meyer, A.; Vasseur, J. J.; Morvan, F. J. Org. Chem. 2008,
73, 191–200.
To this end, two strategies were explored. The first one was
based on the use of a solid support bearing a bromohexyl
group 4 (Figure 1) as an extension of our previous work
where phosphoramidite derivatives 1-3 were used and the
bromine atom was easily substituted after elongation by
sodium azide affording the azido-oligonucleotides.34,51,52
However, with the solid support 4, prepared from CPG
(35) Ustinov, A. V.; Korshun, V. A. Russ. Chem. Bull. 2006, 55, 1268–1274.
(36) Alvira, M.; Eritja, R. Chem. Biodiversity 2007, 4, 2798–2809.
(37) Geci, I.; Filichev, V. V.; Pedersen, E. B. Chem.;Eur. J. 2007, 13,
6379–6386.
(38) Kumar, R.; El-Sagheer, A.; Tumpane, J.; Lincoln, P.; Wilhelmsson,
L. M.; Brown, T. J. Am. Chem. Soc. 2007, 129, 6859–6864.
(39) Morvan, F.; Meyer, A.; Jochum, A.; Sabin, C.; Chevolot, Y.;
Imberty, A.; Praly, J. P.; Vasseur, J. J.; Souteyrand, E.; Vidal, S. Bioconjugate
Chem. 2007, 18, 1637–1643.
(40) Rozkiewicz, D. I.; Gierlich, J.; Burley, G. A.; Gutsmiedl, K.; Carell,
T.; Ravoo, B. J.; Reinhoudt, D. N. ChemBioChem 2007, 8, 1997–2002.
(41) Pourceau, G.; Meyer, A.; Vasseur, J. J.; Morvan, F. J. Org. Chem.
2008, 73, 6014–6017.
˚
with 500 A pore size, we were unable to substitute the
bromine atom using either sodium azide or the more reactive
(42) Ustinov, A. V.; Dubnyakova, V. V.; Korshun, V. A. Tetrahedron
2008, 64, 1467–1473.
(48) Seo, T. S.; Li, Z. M.; Ruparel, H.; Ju, J. Y. J. Org. Chem. 2003, 68,
609–612.
(49) Miller, G. P.; Kool, E. T. J. Org. Chem. 2004, 69, 2404–2410.
(50) Miller, G. P.; Kool, E. T. Org. Lett. 2002, 4, 3599–3601.
(51) Pourceau, G.; Meyer, A.; Vasseur, J. J.; Morvan, F. J. Org. Chem.
2009, 74, 1218–1222.
(43) Berndl, S.; Herzig, N.; Kele, P.; Lachmann, D.; Li, X. H.; Wolfbeis,
O. S.; Wagenknecht, H. A. Bioconjugate Chem. 2009, 20, 558–564.
(44) Singh, I.; Vyle, J. S.; Heaney, F. Chem. Commun. 2009, 3276–3278.
(45) Grajkowski, A.; Cieslak, J.; Kauffman, J. S.; Duff, R. J.; Norris, S.;
Freedberg, D. I.; Beaucage, S. L. Bioconjugate Chem. 2008, 19, 1696–1706.
(46) Meyer, A.; Bouillon, C.; Vidal, S.; Vasseur, J. J.; Morvan, F.
Tetrahedron Lett. 2006, 47, 8867–8871.
(52) Lietard, J.; Meyer, A.; Vasseur, J. J.; Morvan, F. Tetrahedron Lett.
2007, 48, 8795–8798.
(47) Wada, T.; Mochizuki, A.; Higashiya, S.; Tsuruoka, H.; Kawahara,
S.; Ishikawa, M.; Sekine, M. Tetrahedron Lett. 2001, 42, 9215–9219.
(53) Kiviniemi, A.; Virta, P.; Lonnberg, H. Bioconjugate Chem. 2008, 19,
1726–1734.
6838 J. Org. Chem. Vol. 74, No. 17, 2009