Paper
NJC
10 X. Z. Wang, J. Zhang, Y. Y. Wang and Y. Liu, Catal.
Commun., 2013, 40, 23.
11 M. O. Simon and C. J. Li, Chem. Soc. Rev., 2012, 41, 1415.
12 B. Basavaprabhu, M. Samarasimhareddy, G. Prabhu and
V. Sureshbabu, Tetrahedron Lett., 2014, 55, 2256.
Pd(II)-PMO-SBA-16 catalyst could be attributed to the Pd(II)
organometallic complex embedded in the silica walls, which
could effectively inhibit Pd(II)-leaching. According to the ICP
analysis, the amount of Pd(II) species in the solution was less
than 0.5 ppm after being used five times, suggesting that Pd(II)-
leaching could be essentially neglected. On the other hand, the 13 M. Bakherad, A. Keivanloo, B. Bahramian and S. Jajarmi,
Pd(II) organometals embedded in the silica walls might also
enhance the hydrothermal stability of Pd(II)-PMO-SBA-16.38
J. Organomet. Chem., 2013, 724, 206.
14 Y. He and C. Cai, J. Organomet. Chem., 2011, 696, 2689.
15 C. M. Kang, J. L. Huang, W. H. He and F. Zhang,
J. Organomet. Chem., 2010, 695, 120.
16 M. J. Jin and D. H. Lee, Angew. Chem., Int. Ed., 2010,
49, 1119.
17 A. K. Nezhad and F. Panahi, Green Chem., 2011, 13, 2408.
18 Y. He and C. Cai, J. Organomet. Chem., 2011, 696, 2689.
19 W. H. He, F. Zhang and H. X. Li, Chem. Sci., 2011, 2, 961.
20 V. Polshettiwar, C. Len and A. Fihri, Chem. Rev., 2009,
253, 2599.
4. Conclusions
In summary, we have presented a Pd(II) organometal functionalized
SBA-16, which was efficiently used as a heterogeneous catalyst for
Sonogashira coupling reactions in water medium. The catalyst not
only shows high catalytic activity, but also offers many practical
advantages such as thermal stability and recyclability. The catalyst
was reused for five runs in a Sonogashira reaction without a
significant loss of activity, indicating good potential for industrial 21 J. Huang and F. Zhang, Appl. Organomet. Chem., 2010,
applications. In comparison with those bonded to traditional
24, 767.
mesoporous silica supports (e.g., SBA-15), the three-dimensional 22 E. B. Cho, D. Kim, J. Gorka and M. Jaroniec, J. Mater. Chem.,
mesoporous cage-like material SBA-16 was demonstrated to have a 2009, 19, 2076.
superior ability in reducing the diffusion resistance. It can be 23 A. Molnar, Chem. Rev., 2011, 111, 2251.
´
envisioned that other organometallic catalysts including Rh(I),
Ru(II), Ni(II), and rare earth metals can also be designed in this
way, which may offer more opportunities for developing powerful
and reusable catalysts for green organic synthesis.
24 D. Y. Zhao, Q. Huo, J. Feng, B. F. Chmelka and G. D. Stucky,
J. Am. Chem. Soc., 1998, 120, 6024.
˜
˜
25 E. Rivera-Munoz and R. Huirache-Acuna, Int. J. Mol. Sci.,
2010, 11, 3069.
26 Y. Sakamoto, M. Keneda, O. Teresaki, D. Y. Zhao, J. Kim and
G. Stucky, Nature, 2000, 408, 4493.
27 D. Y. Zhao, J. Feng, Q. Huo, N. Melosh, G. Fredrickson and
B. Chmelka, Science, 1998, 279, 548.
28 R. Grudzien, B. Grabicka and M. Jaroniec, J. Mater. Chem.,
2006, 16, 819.
29 X. S. Yang, F. X. Zhu, J. L. Huang, F. Zhang and H. X. Li,
Chem. Mater., 2009, 21, 4925.
Acknowledgements
We are grateful to the National Natural Science Foundation of
China (20825724), University Natural Science Foundation of
Jiangsu Province (13KJB150008) and Administration of Science &
Technology of Huaian city (HAG2013077).
30 A. S. M. Chong and X. S. Zhao, J. Phys. Chem. B, 2003,
107, 12650.
References
31 Q. Hu, J. Hampsey, N. Jiang, C. Li and Y. Lu, Chem. Mater.,
2005, 17, 1561.
1 K. Sonogashira, Metal-Catalyzed Cross-Coupling Reactions,
Wiley-VCH, New York, USA, 1998.
32 F. Zhang, G. H. Liu, H. X. Li and Y. F. Lu, Adv. Funct. Mater.,
2008, 18, 1.
2 I. Paterson, R. D. M. Davies and R. Marquez, Angew. Chem.,
Int. Ed., 2001, 40, 603.
33 M. Jurgen, G. Martin, W. Georg, J. Jian, H. Michael, J. Peter
and F. Michael, J. Mater. Chem., 2006, 16, 2809.
34 J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben,
Handbook of X-ray Photoelectron Spectroscopy, A Reference
Book of Standard Spectra for Identification and Interpretation
of XPS Data, Perkin-Elmer Corporation, Physical Electronics
Division, Eden Prairie, MN, 1992.
3 T. Hundertmark, A. F. Littke, S. L. Fu and G. C. Buchwald,
Org. Lett., 2000, 2, 1729.
4 N. D. P. Cosford, L. Tehrani, J. Roppe, E. Schweiger,
N. D. Smith, J. Anderson, L. Bristow, J. Brodkin, X. Jiang,
I. McDonald, S. Rao, M. Washburn and M. A. Varney, J. Med.
Chem., 2003, 46, 204.
5 K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron
Lett., 1975, 16, 4467.
35 H. Q. Yang, L. Zhang, W. Su, Q. Yang and C. Li, J. Catal.,
2007, 248, 204.
´
6 R. Chinchilla and C. Najera, Chem. Soc. Rev., 2011, 40, 5084.
´
36 K. Morishige, N. Tateishi and S. Fukuma, J. Phys. Chem. B,
2003, 107, 5177–5181.
37 R. A. Sheldon, Green Chem., 2005, 7, 267.
7 R. Chinchilla and C. Najera, Chem. Rev., 2007, 107, 874.
8 A. N. Marziale, J. Schlu¨ter and J. Eppinger, Tetrahedron Lett.,
2011, 52, 6355.
´
´
9 A. Komaromi, G. L. Tolnai and Z. Novak, Tetrahedron Lett., 38 J. E. Herrera, J. Kwak, J. Z. Hu, Y. Wang, C. H. F. Peden,
2008, 49, 7294. J. Macht and E. Iglesia, J. Catal., 2006, 239, 200.
This journal is ©The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014
New J. Chem., 2014, 38, 4594--4599 | 4599