C O M M U N I C A T I O N S
Table 2. Catalytic Enantioselective Conjugate Boration of
ꢀ-Substituted Cyclic Enones
Acknowledgment. Financial support was provided by Grant-
in-Aid for Scientific Research (S) and (B) from JSPS. We thank
T. Nitabaru and Y. Kimura for X-ray crystallographic studies of
3a. I.H. thanks Iwaki Pharmaceutical Company for financial support.
Supporting Information Available: Experimental procedures and
characterization of the products. This material is available free of charge
References
(1) Recent reviews: (a) Christoffers, J.; Koripelly, G.; Rosiak, A.; Ro¨ssle, M.
Synthesis 2007, 1279. (b) Thaler, T.; Knochel, P. Angew. Chem., Int. Ed.
2009, 48, 645.
entry
substrate
x (mol %)
yield (%)a
ee (%)b
1
2
3
4
R ) Ph, n ) 1 (1a)
5
10
10
5
10
10
5
10
10
10
10
10
88
84
86
80
83
89
91
91
92
85
94
99
98d
93
95
93
95
98
81
94
85
98
70
98
(2) Cu-catalyzed conjugate alkylation is the main method [(a)-(k)]: (a) Wu,
J.; Mampreian, D. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 4584.
(b) Hird, A. W.; Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 14988. (c)
Lee, K.; Brown, M. K.; Hird, A. W.; Hoveyda, A. H. J. Am. Chem. Soc.
2006, 128, 7182. (d) Brown, M. K.; May, T. L.; Baxter, C. A.; Hoveyda,
A. H. Angew. Chem., Int. Ed. 2007, 46, 1097. (e) May, T.; Brown, M. K.;
Hoveyda, A. H. Angew. Chem., Int. Ed. 2008, 47, 7358. (f) Brown, M. K.;
Hoveyda, A. H. J. Am. Chem. Soc. 2008, 130, 12904. (g) Martin, D.; Kehrli,
S.; d’Augustin, M.; Clavier, H.; Mauduit, M.; Alexakis, A. J. Am. Chem.
Soc. 2006, 128, 8416. (h) Palais, L.; Mikhel, I. S.; Bournaud, C.; Micouin,
L.; Falciola, C. A.; Vuagnoux-d’Augustin, M.; Rosset, S.; Bernardinelli,
G.; Alexakis, A. Angew. Chem., Int. Ed. 2007, 46, 7462. (i) Vuagnoux-
d’Augustin, M.; Alexakis, A. Chem.sEur. J. 2007, 13, 9647. (j) Hawner,
C.; Li, K.; Cirriez, V.; Alexakis, A. Angew. Chem., Int. Ed. 2008, 47, 8211.
(k) He´non, H.; Mauduit, M.; Alexakis, A. Angew. Chem., Int. Ed. 2008,
47, 9122. (l) Mauleo´n, P.; Carretero, J. C. Chem. Commun. 2005, 4961.
(m) Shintani, R.; Duan, W.; Hayashi, T. J. Am. Chem. Soc. 2006, 128,
5628. (n) Wang, X.; Reisinger, C. M.; List, B. J. Am. Chem. Soc. 2008,
130, 6070. (o) Mazet, C.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2008,
47, 1762.
R ) p-MeO-C6H4, n ) 1 (1b)
R ) p-Me-C6H4, n ) 1 (1c)
R ) p-F-C6H4, n ) 1 (1d)
R ) m-MeO-C6H4, n ) 1 (1e)
R ) m-Me-C6H4, n ) 1 (1f)
R ) Me, n ) 1 (1g)
5
6
7c
8
i
R ) Pr, n ) 1 (1h)
i
9
R ) Bu, n ) 1 (1i)
10
11
12
R ) Ph, n ) 0 (1j)
i
R ) Bu, n ) 0 (1k)
R ) Ph, n ) 2 (1l)
a Isolated yield. b Determined by chiral GC or HPLC. NaOtBu was
used instead of LiOtBu. d Absolute configuration was assigned to be
(R).13
c
(3) Ito, H.; Yamanaka, H.; Tateiwa, J.; Hosomi, A. Tetrahedron Lett. 2000,
41, 6821.
(4) Takahashi, K.; Ishiyama, T.; Miyaura, N. J. Organomet. Chem. 2001, 625,
47.
Scheme 1. Synthetically Useful Conversions of the Products and
Extension to a Catalytic Asymmetric Three-Component Reaction
(5) Cu-based carbon nucleophiles generated through transmetalation exhibit
high reactivity in catalytic asymmetric tetrasubstituted carbon synthesis:
Shibasaki, M.; Kanai, M. Chem. ReV. 2008, 108, 2853.
(6) (a) Mun, S.; Lee, J.; Yun, J. Org. Lett. 2006, 8, 4887. (b) Lee, J.; Yun, J.
Angew. Chem., Int. Ed. 2008, 47, 145. (c) Sim, H.; Feng, X.; Yun, J.
Chem.sEur. J. 2009, 15, 1939. (d) Chea, H.; Sim, H.; Yun, J. AdV. Synth.
Catal. 2009, 351, 855. (e) Lillo, V.; Prieto, A.; Bonet, A.; D´ıaz-Requejo,
M. M.; Ram´ırez, J.; Pe´rez, P. J.; Ferna´ndez, E. Organometallics 2009, 28,
659. (f) Fleming, W. J.; Mu¨ller-Bunz, H.; Lillo, V.; Ferna´ndez, E.; Guiry,
P. J. Org. Biomol. Chem. 2009, 7, 2520.
(7) For other examples of the catalytic asymmetric synthesis of chiral
organoboron compounds (hydroboration and diboration): (a) Lee, Y.;
Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 3160. (b) Smith, S. M.;
Thacker, N. C.; Takacs, J. M. J. Am. Chem. Soc. 2008, 130, 3734. (c)
Morgan, J. B.; Miller, S. P.; Morken, J. P. J. Am. Chem. Soc. 2003, 125,
8702. (d) Burks, H. E.; Morken, J. P. Chem. Commun. 2007, 4717.
(8) For example: (a) Hupe, E.; Marek, I.; Knochel, P. Org. Lett. 2002, 4, 2861.
(b) Kabalka, G. W.; Shoup, T. M.; Goudgaon, N. M. Tetrahedron Lett.
1989, 30, 1483. (c) Matteson, D. S. Tetrahedron 1998, 54, 10555. (d)
Stymiest, J. L.; Bagutski, V.; French, R. M.; Aggarwal, V. K. Nature 2008,
456, 778. (e) Imao, D.; Glasspoole, B. W.; Laberge, V. S.; Crudden, C. M.
J. Am. Chem. Soc. 2009, 131, 5024.
(9) The FDA-approved anticancer drug bortezomib is a typical example: Kane,
R. C.; Bross, P. F.; Farrell, A. T.; Pazdur, R. The Oncologist 2003, 8, 508.
(10) Ito, H.; Ito, S.; Sasaki, Y.; Matsuura, K.; Sawamura, M. J. Am. Chem.
Soc. 2007, 129, 14856.
(11) Imamoto, T.; Sugita, K.; Yoshida, K. J. Am. Chem. Soc. 2005, 127, 11934.
(12) During the preparation of this manuscript, Hoveyda reported a relevant
diastereoselective (but racemic) three-component coupling reaction involv-
ing NHC-catalyzed (Cu and protic additive-free) conjugate boration to
2-cyclohexen-1-one: Lee, K.; Zhugralin, A. R.; Hoveyda, A. H. J. Am.
Chem. Soc. 2009, 131, 7253.
(13) For the stereochemical model, see Supporting Information (SI).
(14) The following additional information on the role of Li salt was included in
the SI: (a) the PF6 anion was not essential, negating a possibility for a
fluoride acting as an accelerator; (b) the reaction rate did not change in the
presence of g10 mol % of LiPF6, suggesting that the Li salt does not act
as an enhancer of solvent polarity.
(15) Acceleration by Li salts was also observed in a Cu-catalyzed asymmetric
allylcyanide addition: Yazaki, R.; Nitabaru, T.; Kumagai, N.; Shibasaki,
M. J. Am. Chem. Soc. 2008, 130, 14477.
boration, diastereoselective aldol reaction, and oxidation in one pot,
was obtained in 71% yield with 91% ee (only two diastereomers
were detected; dr ) 6.5/1). Thus, the stereochemistries of three
contiguous stereogenic centers involving a tetrasubstituted carbon
were controlled in a high level, including their absolute configu-
ration.12
Although it is not yet clear why protic additives are not necessary
for this reaction, we currently believe that a catalytic amount of
LiPF6 generated in the active catalyst (CuOtBu) formation step from
CuPF6 and LiOtBu accelerates the probable turnover-limiting
catalyst regeneration step.14,15 The acceleration effect of LiPF6 was
confirmed by comparison with a reaction using Li-free CuOtBu16
catalyst (5 mol %); 3a was obtained only in 31% yield with 75%
ee (cf. Table 2, entry 1). The yield of 3a improved to 80% (87%
ee) when LiPF6 (5 mol %) was added to this reaction mixture.
In conclusion, we developed an enantioselective conjugate
boration of ꢀ-substituted cyclic enones to produce enantiomerically
enriched tertiary boronates, catalyzed by a Cu-QuinoxP* complex.
Catalytic LiPF6 had positive effects on reactivity. Detailed mecha-
nistic studies especially upon the role of LiPF6 are currently
ongoing.
(16) (a) Tsuda, T.; Hashimoto, T.; Saegusa, T. J. Am. Chem. Soc. 1972, 94,
658. (b) Suto, Y.; Kumagai, N.; Matsunaga, S.; Kanai, M.; Shibasaki, M.
Org. Lett. 2003, 5, 3147.
JA9045839
9
J. AM. CHEM. SOC. VOL. 131, NO. 33, 2009 11665