C O M M U N I C A T I O N S
Scheme 3. Enantiocontrolled Synthesis of (+)-Isofebrifuginea
Scheme 2. Control Experiment: Reaction of
Molybdenum-Stabilized Carbocation 15 with Sodium Dimethyl
Malonate
An X-ray crystal structure of 8 (Table 1) unambiguously
established direct anti nucleophilic attack at the neutral η3-
allylmolybdenum (details are provided in the Supporting Informa-
tion). In contrast some Mo-catalyzed allylic alkylations occur
through a metal-centered attack,5 and Green has disclosed results
consistent with the direct attack of a nucleophile at the molybdenum
moiety of a neutral η3-lactonylmolybdenum complex.6
a (a) NaH, CH3COCH2SO2Ph, DMSO, rt, overnight then NaH, Cu(eth-
ylhexanoate)2, air, overnight. (b) (1) 10% Na/Hg,THF/MeOH, Na2HPO4,
-35 °C to rt; (2) HCl, acetone. (c) PtO2, H2. (d) TIPSCl, imidazole, DMF.
(e) (1) TMSOTf, TEA, DCM then NBS; (2) 4-hydroxyquinazoline, NaH,
THF, 15-C-5. (f) 6 M HCl, reflux, 90 min.
Acknowledgment. ThisworkwassupportedbyGrantGM043107,
awarded by National Institute of General Medical Sciences, DHHS.
We thank colleague Dr. Kenneth Hardcastle for his skilled and
efficient assistance with X-ray crystallography.
A represenative sampling of product molybdenum complexes
were cleanly converted to bicyclic annulation products in high yields
and with excellent stereoselectivity (Table 1). For example,
treatment of 7, 10, 11, and 14 with NaH in DMSO in the presence
of a catalytic amount of copper(II) 2-ethylhexanoate7 open to air
provided the annulation products 17-20 in 83-92% isolated yields
(Table 2). In earlier work, Pearson used different nonbasic
annulative demetalation reagents such as I28 or NOBF49 for related
transformations, but exposing our substrates to these reagents (as
well as prolonged standing in CDCl3) yielded only the undesired
elimination product (i.e., 16, Scheme 2) through ionization of the
carbon nucleophile10 and subsequent proton loss. Mechanistically,
we suggest that the reactions of Table 2 proceed through one-
electron oxidation of the stabilized enolate to a radical11 that then
reacts with the adjacent η3-allylmolybdenum moiety.
Note Added after ASAP Publication. Due to a production error
the graphics in Tables 1 and 2 were incorrect in the version published
ASAP August 10, 2009; the correct version was published ASAP
August 14, 2009.
Supporting Information Available: Experimental procedures,
synthesis and characterization of all new compounds and X-ray
crystallographic studies of 8, scanned copies of 1H and 13C NMR spectra
of all new compounds. This material is available free of charge via the
References
(1) (a) Yin, J.; Liebeskind, L. S. J. Am. Chem. Soc. 1999, 121, 5811–5812.
(b) Malinakova, H. C.; Liebeskind, L. S. Org. Lett. 2000, 2, 3909–3911.
(c) Malinakova, H. C.; Liebeskind, L. S. Org. Lett. 2000, 2, 4083–4086.
(d) Moretto, A. F.; Liebeskind, L. S. J. Org. Chem. 2000, 65, 7445–7455.
(e) Yin, J.; Llorente, I.; Villanueva, L. A.; Liebeskind, L. S. J. Am. Chem.
Soc. 2000, 122, 10458–10459. (f) Arraya´s, R. G.; Liebeskind, L. S. J. Am.
Chem. Soc. 2001, 123, 6185–6186. (g) Shu, C.; Alcudia, A.; Yin, J.;
Liebeskind, L. S. J. Am. Chem. Soc. 2001, 123, 12477–12487. (h) Arraya´s,
R. G.; Liebeskind, L. S. J. Am. Chem. Soc. 2003, 125, 9026–9027. (i) Shu,
C.; Liebeskind, L. S. J. Am. Chem. Soc. 2003, 125, 2878–2879. (j) Zhang,
Y.; Liebeskind, L. S. J. Am. Chem. Soc. 2005, 127, 11258–11259. (k)
Zhang, Y.; Liebeskind, L. S. J. Am. Chem. Soc. 2006, 128, 465–472. (l)
Arraya´s, R. G.; Yin, J.; Liebeskind, L. S. J. Am. Chem. Soc. 2007, 129,
1816–1825. (m) Coombs, T. C.; Lee, M. D., IV; Wong, H.; Armstrong,
M.; Cheng, B.; Chen, W.; Moretto, A. F.; Liebeskind, L. S. J. Org. Chem.
2008, 73, 882–888. (n) Garnier, E. C.; Liebeskind, L. S. J. Am. Chem.
Soc. 2008, 130, 7449–7458. (o) Coombs, T. C.; Zhang, Y.; Garnier-
Amblard, E. C.; Liebeskind, L. S. J. Am. Chem. Soc. 2009, 131, 876–877.
(2) Curtis, M. D.; Shiu, K. B.; Butler, W. M. Organometallics 1983, 2, 1475–
1477.
(3) The details of the preparation and characterization of the substrates are
provided in the Supporting Information.
(4) For a comprehensive listing of pKa’s in DMSO, see http://www.chem.wis-
c.edu/areas/reich/pkatable/index.htm.
(5) Hughes, D. L.; Lloyd-Jones, G. C.; Krska, S. W.; Gouriou, L.; Bonnet,
V. D.; Jack, K.; Sun, Y. K.; Mathre, D. J.; Reamer, R. A. Proc. Natl. Acad.
Sci. U.S.A. 2004, 101, 5379–5384.
(6) Butters, C.; Carr, N.; Deeth, R. J.; Green, M.; Green, S. M.; Mahon, M. F.
J. Chem. Soc., Dalton Trans. 1996, 2299–2308.
The synthetic potential of this methodology was demonstrated
by an asymmetric synthesis of the antimalarial alkaloid (+)-
isofebrifugine (Scheme 3).12
Upon treatment of high enantiopurity (+)-4b3 in one pot with
phenyl sulfonyl acetone anion in DMSO followed by a copper-
catalyzed annulative demetalation, the bicyclic product (-)-21 was
obtained in good yield without loss of enantiopurity. Desulfony-
lation with 10% Na/Hg and an acidic workup afforded the hemiketal
(+)-22 in 86% yield. Hydrogenation on PtO2 yielded (+)-23 which
was subjected to standard TIPS protection conditions to furnish
(+)-24 selectively in 75% yield (along with the recovery of 20%
of the starting material). The ketone (+)-24 was monobrominated
by subjecting its in situ generated silyl enol ether to NBS. The
crude R-bromoketone was directly treated with 4-hydroxyquinazo-
line to afford (+)-25. Finally, deprotection with 6 M HCl delivered
20
(+)-isofebrifugine, 26, in 63% yield ([R]D ) +129, c ) 0.3,
CHCl3, Lit.12a [R]D ) +131, c ) 0.35, CHCl3).
20
(7) Other oxidants including CuCl2, Cu(acac)2, MnO2, Pb(OAc)4, and ceric
ammonium nitrate gave much poorer results or no reaction at all. Cu(OAc)2
gave slightly lower yields than Cu(II) 2-ethylhexanoate.
(8) Pearson, A. J.; Khan, M. N. I.; Clardy, J. C.; He, C.-H. J. Am. Chem. Soc.
1985, 107, 2748–2757.
Table 2. Cu-Catalyzed Aerobic Annulative Demetalation
(9) Pearson, A. J.; Mesaros, E. F. Org. Lett. 2002, 4, 2001–2004.
(10) (a) Nilsson, Y. I. M.; Andersson, P. G.; Ba¨ckvall, J.-E. J. Am. Chem. Soc.
1993, 115, 6609–6613. (b) Trost, B. M.; Bunt, R. C. J. Am. Chem. Soc.
1998, 120, 70–79.
(11) (a) Jahn, U.; Hartmann, P.; Dix, I.; Jones, P. G. Eur. J. Org. Chem. 2001,
3333–3355. (b) Jahn, U.; Hartmann, P. J. Chem. Soc., Perkin Trans. 1
2001, 2277–2282. (c) Jahn, U. J. Org. Chem. 1998, 63, 7130–7131.
(12) (a) Koepfly, J. B.; Mead, J. F.; Brockman, J. A., Jr. J. Am. Chem. Soc.
1949, 71, 1048–1054. (b) Kobayashi, S.; M., U.; Suzuki, R.; Ishitani, H.;
Kim, H.; Wataya, Y. J. Org. Chem. 1999, 64, 6833–6841. (c) Wee,
A. G. H.; Fan, G.-J. Org. Lett. 2008, 10, 3869–3872.
entry
reactant
Z
EWG
R
% yield
1
2
3
4
7
O
O
O
COOMe
COOMe
COMe
Me
H
H
17, 85
18, 83
19, 92
20, 83
10
11
14
NCbz
COOMe
H
JA9056322
9
J. AM. CHEM. SOC. VOL. 131, NO. 35, 2009 12547