4294
M. A. Hilfiker et al. / Bioorg. Med. Chem. Lett. 19 (2009) 4292–4295
Table 3
Table 5
Human EP3 activity across benzoxazine SAR
In vitro selectivity and orthologue activity data for 2416
Me
O
N
N
Cl
O
R
N
N
N
N
H
S
N
S
Me
O
H
FLIPR hEP3 fpKia
Cl
Compound
R
Selectivity (pKi)
EP1
<4.6
EP2
<5.0
EP4
<5.0
DP
<5.0
FP
<4.6
Me
N
18
8.3
TP
<5.0
Cox 1
<4.6
Cox 2
<4.6
rat-EP3
8.2
dog-EP3
7.9
h-EP3 pEC50
<4.6
O
O
19
20
7.8
6.1
5.7
N
potency at rat and dog EP3 receptors as well as its selectivity
against other prostenoid receptors (Table 5). Additionally, since
prostenoid synthesis is dependant upon the oxidative metabolism
of arachidonic acid, COX1/2 activity was assayed. Activity at the rat
and dog receptors was comparable to that for the human receptor
with similar selectivity against the rat EP1 receptor. In addition, no
agonist activity was observed for compounds in this series at the
human EP3 receptor as exemplified by compound 24.
Me
Ac
N
O
Me
N
O
21
O
In conclusion, optimization of the 2-aminothiadiazole template
has yielded potent EP3 antagonists with excellent rat PK properties
and broad cross-species activity as exemplified by compound 24.
In addition, this compound class shows excellent selectivity
against other prostenoid receptors including other EP subtypes
making this series a valuable tool for identifying and validating po-
tential therapeutic benefits resulting from selective EP3 inhibition.
a
Values are a mean of at least two determinations with a SEM < 0.1 log units.
Table 4
In vitro activity and rat DMPK properties
Cl
N
O
N
R
N
S
H
Cl
References and notes
Compound
R
FLIPR hEP3
Rat DMPK propertiesb
fpKia
1. (a) Sugimoto, Y.; Namba, T.; Shigemoto, R.; Negishi, M.; Ichikawa, A.;
Narumaiya, S. Am. J. Physiol. 1994, 266, F823; (b) Riento, K.; Ridley, A. J. Nat.
Rev. Mol. Cell Biol. 2003, 4, 446.
T½
(h)
Cl
Oral F
(mL/min/kg)
(%)
Me
N
2. (a) Sharif, N. A.; Xu, S. X. J. Pharm. Pharmacol. 2004, 56, 197; (b) Hamon, M.;
Berthaut, J.; Wisner, A.; Dray, F.; Descomps, B.; Dao, H. T. Prostaglandins 1993,
46, 251.
3. Maruyama, T.; Kobayashi, M.; Nonaka, S.; Okada, H.; Konemura, T. WO Patent
2005000356 A1, 2005; Chem. Abstr. 2005, 14258. see also Ref. 10.
4. (a) Soll, A. H. J. Clin. Invest. 1980, 65, 1222; (b) Takeuchi, K.; Svanes, K.;
Critchlow, J.; Magee, D.; Silen, W. Proc. Soc. Exp. Biol. Med. 1982, 170, 398; (c)
Main, I. H. M.; Whittle, B. J. R. Eur. J. Pharmacol. 1974, 26, 204; (d) Nylander, O.;
Berhlindh, T.; Obrink, K. J. Am. J. Physiol. 1986, 250, G607.
5. (a) Sugimoto, Y.; Namba, T.; Honda, A.; Hayashi, Y.; Negishi, M.; Ichikawa, A.;
Narumiya, S. J. Biol. Chem. 1992, 267, 6463; (b) Ek, M.; Arias, C.; Sawchenko, P.;
Ericsson-Dahlstrand, A. J. Comp. Neurol. 2000, 428, 5.
6. For reviews, see: (a) Narumaiya, S.; Sugimoto, Y.; Ushikubi, Y. Physiol. Rev.
1999, 79, 1193; (b) Breyer, R. M.; Bagdassarian, C. K.; Myers, S. A.; Breyer, M. D.
Annu. Rev. Pharmacol. Toxicol. 2001, 41, 661.
22
23
24
a
8.9
8.1
8.9
0.23
1.1
22
41
6.5
97
O
H
N
70
O
Et
N
5.2
100
O
7. Krall, J. F.; Barrett, J. D.; Jamgotchian, N.; Korenman, S. G. J. Endocrinology 1984,
102, 329.
8. Chen, M. C. Y.; Amirian, D. A.; Toomey, M.; Sanders, M. J.; Soll, A. H.
Gastroenterology 1988, 94, 1121.
Values are a mean of at least two determinations with a SEM < 0.1 log units.
DMPK properties are averaged values (n = 3) from an oral/iv po study in
Sprague–Dawley rats dosed at 2 mg/kg (oral) and 1 mg/kg (iv).
b
9. Ushikubi, F.; Segi, E.; Sugimoto, Y.; Murata, T.; Matsuoka, T.; Kobayashi, T.;
Hizaki, H.; Tuboi, K.; Katsuyama, M.; Ichikawa, A.; Tanaka, T.; Yoshida, N.;
Narumiya, S. Nature 1998, 395, 281.
10. (a) McCafferty, G. P.; Misajet, B. A.; Laping, N. J.; Edwards, R. M.; Thorneloe, K. S.
Am. J. Physiol. Renal Physiol. 2008, 295, 507; (b) Su, X.; Lashinger, E. R. S.; Leon, L.
A.; Hoffman, B. E.; Hieble, J. P.; Gardner, S. D.; Fries, H. E.; Edwards, R. M.; Li, J.;
Laping, N. J. Am. J. Physiol. Renal Physiol. 2008, 295, 585; (c) Su, X.; Leon, L. A.;
Wu, C. W.; Morrow, D. M.; Jaworski, J-P.; Hieble, J. P.; Lashinger, E. S. R.; Jin, J.;
Edwards, R. M.; Laping, N. J. Am. J. Physiol. Renal Physiol. 2008, 295, 984.
11. (a) Shimazaki, Y.; Kameo, K.; Tanami, T.; Tanaka, H.; Ono, N.; Kiuchi, Y.;
Okamoto, S.; Sato, F.; Ichikawa, A. Bioorg. Med. Chem. 2000, 8, 353; (b) Collins, P.
W. J. Med. Chem. 1986, 29, 437.
12. (a) Juteau, H.; Gareau, Y.; Labelle, M.; Sturino, C. F.; Sawyer, N.; Tremblay, N.;
Lamontagne, S.; Carriere, M. C.; Denis, D.; Metters, K. M. Bioorg. Med. Chem.
2001, 9, 1977; (b) Gallant, M.; Carriere, M. C.; Chateauneuf, A.; Denis, D.;
Gareau, Y.; Godbout, C.; Greig, G.; Juteau, H.; Lachance, N.; Lacombe, P.;
Lamontagne, S.; Metters, K. M.; Rochette, C.; Ruel, R.; Slipetz, D.; Sawyer, N.;
Tremblay, N.; Labelle, M. Bioorg. Med. Chem. Lett. 2002, 12, 2583; (c) Belley, M.;
Chan, C. C.; Gareau, Y.; Gallant, M.; Juteau, H.; Houde, K.; Lachance, N.; Labelle,
M.; Sawyer, N.; Tremblay, N.; Lamontagne, S.; Carriere, M.-C.; Denis, D.; Greig,
G. M.; Slipetz, D.; Gordon, R.; Chauret, N.; Li, C.; Zamboni, R. J.; Metters, K. M.
acids were coupled to 2-amino-5-(2,6-dichlorophenyl)thiadiazole
(Table 4). Although a high level of potency was achieved in vitro,
N-methylbenzoxazine amide 22 demonstrated high clearance
resulting in a short half-life in the rat. The exceptional oral bio-
availability and potency prompted investigation into the nature
of the metabolic clearance. We hypothesized that the high clear-
ance might be attributed to N-methyl dealkylation. To test this
hypothesis the unsubstituted benzoxazine 23 and N-ethylbenzox-
azine 24 were synthesized. Analysis of 23 and 24 indicates that N-
alkylation mitigates benzoxazine metabolism with N-ethylamine
24 having a dramatically diminished rate of clearance with a sig-
nificantly longer half-life.
Having identified compound 24 as a potent antagonist against
human EP3 with excellent rat PK properties, we evaluated its