C O M M U N I C A T I O N S
Table 2. Rhodium-Catalyzed Enantioselective Hydroacylation of
Acrylamides 2a-d with Aliphatic Aldehydes 1a-ha
Scheme 1
entry
1
R1
2
R2
R3, R4
yield (%)b
ee (%)
1
2
1a Ph(CH2)2
1a Ph(CH2)2
1a Ph(CH2)2
1a Ph(CH2)2
1b n-Pr
1c n-C7H15
1d i-Bu
2a Me Ph2
2b Me Me, Ph
2c Me Bn2
87
74
73
78
79
75
74
80
81
76
73
0
98 (+)
96 (+)
97 (+)
99 (+)
98 (+)
98 (+)
98 (R, +)
97 (+)
98 (+)
98 (+)
97 (+)
-
3c
4c
5d
6
2d Ph
Ph2
2a Me Ph2
2a Me Ph2
2a Me Ph2
7d
8c d
1d i-Bu
1e c-C5H9
2d Ph
Ph2
,
tionalized aldehydes. Future work will focus on establishment of the
enantio- and diastereoselective hydroacylation of trisubstituted alkenes
with aldehydes.
9d
2a Me Ph2
2a Me Ph2
10
11c
12
13
1f
1f
Cy
Cy
2d Ph
2a Me Ph2
1h BnO(CH2)3 2a Me Ph2
Ph2
Acknowledgment. This work was supported partly by Grants-
in-Aid for Scientific Research (Nos. 19028015, 20675002, and 21•906)
from MEXT, Japan. We thank Umicore for generous support in
supplying rhodium complexes.
1g t-Bu
74
98 (+)
a [Rh(nbd)2]BF4 (0.025 mmol), (R,R)-QuinoxP* (0.025 mmol),
1
(0.550 mmol), 2 (0.500 mmol), and (CH2Cl)2 (1.0 mL) were used. The
active catalysts were generated in situ by hydrogenation. b Yield based
on 2. c Catalyst: 10 mol %. d 2 equiv of 1 was used due to its volatility.
Supporting Information Available: Experimental procedures and
compound characterization data. This material is available free of charge
References
2a and 2d to yield the corresponding γ-ketoamides in high yields with
excellent ee values (entries 5-11), while pivalaldehyde (1g) failed to
react with 2a (entry 12). Functionalized aldehyde 1h could also
participate in this reaction (entry 13).
Unfortunately, the reaction of benzaldehyde (1i) and 2a was sluggish
and enantioselectivity was moderate, but the use of Me-Duphos as a
ligand could improve both yield and ee values (eq 3).
(1) For a recent review, see: Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013.
(2) (a) Fujii, N.; Kakiuchi, F.; Yamada, A.; Chatani, N.; Murai, S. Chem. Lett.
1997, 26, 425. (b) Thalji, R. K.; Bergman, R. G.; Ellman, J. A. J. Am. Chem.
Soc. 2004, 126, 7192. (c) Han, X.; Widenhoefer, R. A. Org. Lett. 2006, 8,
3801. (d) Harada, H.; Thalji, R. K.; Bergman, R. G.; Ellman, J. A. J. Org.
Chem. 2008, 73, 6772.
(3) (a) Aufdenbatten, R.; Diezi, S.; Togni, A. Monatsh. Chem. 2000, 131, 1345.
(b) Tsuchikama, K.; Kasagawa, M.; Hashimoto, Y-k.; Endo, K.; Shibata, T.
J. Organomet. Chem. 2008, 693, 3939.
(4) A chiral Pd(II) complex-catalyzed asymmetric Fujiwara-Moritani reaction
using cyclohexenecarbonitrile was reported, while both yields and ee values
were low; see: Mikami, K.; Hatano, M.; Terada, M. Chem. Lett. 1999, 55.
(5) Transition metal catalyzed atropselective alkylation of 2-arylpyridines was
reported; see: Kakiuchi, F.; Le Gendre, P.; Yamada, A.; Ohtaki, H.; Murai, S.
Tetrahedron: Asymmetry 2000, 11, 2647.
(6) Enantioselective desymmetrization of prochiral diaryl-2-picolines by Pd-
catalyzed sp2 C-H bond alkylation was reported; see: Shi, B.-F.; Maugel, N.;
Zhang, Y.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 4882.
(7) (a) Taura, Y.; Tanaka, M.; Wu, X.-M.; Funakoshi, K.; Sakai, K. Tetrahedron
1991, 47, 4879. (b) Barnhart, R. W.; Wang, X.; Noheda, P.; Bergens, S. H.;
Whelan, J.; Bosnich, B. J. Am. Chem. Soc. 1994, 116, 1821. (c) Barnhart,
R. W.; McMorran, D. A.; Bosnich, B. Chem. Commun. 1997, 589. (d) Kundu,
K.; McCullagh, J. V.; Morehead, A. T., Jr. J. Am. Chem. Soc. 2005, 127,
16042. (e) Coulter, M. M.; Dornan, P. K.; Dong, V. M. J. Am. Chem. Soc.
2009, 131, 6932, and references therein.
Finally, the reaction of a 1,2-disubstituted alkene, N,N-diphenyl-
crotonamide, was investigated, but complete product racemization was
observed at 80 °C. Although a transition metal catalyzed hydroacylation
of a trisubstituted alkene has not been reported, if the hydroacylation
of trisubstituted alkene 2e with 1a proceeds, a thermodynamically stable
diastereomer would be generated. Pleasingly, hydroacylation product
3ae was obtained with perfect diastereoselectivity as well as high
enantioselectivity, although significantly reduced reactivity was ob-
served (eq 4).
(8) Stemmler, R. T.; Bolm, C. AdV. Synth. Catal. 2007, 349, 1185.
(9) Osborne, J. D.; Randell-Sly, H. E.; Currie, G. S.; Cowley, A. R.; Willis, M. C.
J. Am. Chem. Soc. 2008, 130, 17232.
(10) For examples of aldehyde chelation-assisted intermolecular hydroacylations,
see: (a) Suggs, J. W. J. Am. Chem. Soc. 1978, 100, 640. (b) Jun, C.-H.; Lee,
H.; Hong, J.-B. J. Org. Chem. 1997, 62, 1200. (c) Park, Y. J.; Park, J.-W.;
Jun, C.-H. Acc. Chem. Res. 2008, 41, 222. (d) Kokubo, K.; Matsumasa, K.;
Miura, M.; Nomura, M. J. Org. Chem. 1997, 62, 4564. (e) Imai, M.; Tanaka,
M.; Tanaka, K.; Yamamoto, Y.; Imai-Ogata, N.; Shimowatari, M.; Nagumo,
S.; Kawahara, N.; Suemune, H. J. Org. Chem. 2004, 69, 1144. (f) Imai, M.;
Tanaka, M.; Nagumo, S.; Kawahara, N.; Suemune, H. J. Org. Chem. 2007,
72, 2543. (g) Willis, M. C.; McNally, S. J.; Beswick, P. J. Angew. Chem.,
Int. Ed. 2004, 43, 340. (h) Moxham, G. L.; Randell-Sly, H. E.; Brayshaw,
S. K.; Woodward, R. L.; Weller, A. S.; Willis, M. C. Angew. Chem., Int. Ed
2006, 45, 7618, and references therein.
(11) For examples of intermolecular hydroacylations, see: (a) Schwartz, J.; Cannon,
J. B. J. Am. Chem. Soc. 1974, 96, 4721. (b) Vora, K. P.; Lochow, C. F.;
Miller, R. G. J. Organomet. Chem. 1980, 192, 257. (c) Marder, T. B.; Roe,
D. C.; Milstein, D. Organometallics 1988, 7, 1451. (d) Kondo, T.; Tsuji, Y.;
Watanabe, Y. Tetrahedron Lett. 1987, 28, 6229. (e) Lenges, C. P.; White,
P. S.; Brookhart, M. J. Am. Chem. Soc. 1998, 120, 6965. (f) Hong, Y.-T.;
Barchuk, A.; Krische, M. J. Angew. Chem., Int. Ed. 2006, 45, 6885. (g)
Roy, A. H.; Lenges, C. P.; Brookhart, M. J. Am. Chem. Soc. 2007, 129, 2082.
(h) Shibahara, F.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2008, 130,
14120. (i) Omura, S.; Fukuyama, T.; Horiguchi, J.; Murakami, Y.; Ryu, I.
J. Am. Chem. Soc. 2008, 130, 14094, and references therein.
A possible mechanism for highly selective production of (R)-3da
is shown in Scheme 1. The formation of intermediate A might be more
favorable than that of intermediate B due to the steric interaction
between the amide moiety of 2a and the tert-butyl group of (R,R)-
QuinoxP* in intermediate B. We believed that strong bidentate
coordination of substituted acrylamides to the cationic rhodium might
stabilize the acylrhodium intermediate and construct the rigid chiral
environment.
(12) Tanaka, K.; Shibata, Y.; Suda, T.; Hagiwara, Y.; Hirano, M. Org. Lett. 2007,
9, 1215.
In conclusion, we have established that a cationic rhodium(I)/
QuinoxP* complex catalyzes the highly enantioselective direct inter-
molecular hydroacylation of 1,1-disubstituted alkenes with unfunc-
(13) Imamoto, T.; Sugita, K.; Yoshida, K. J. Am. Chem. Soc. 2005, 127, 11934.
JA905908Z
9
J. AM. CHEM. SOC. VOL. 131, NO. 35, 2009 12553