A R T I C L E S
Chou et al.
Scheme 1a
Table 1. Photophysical Properties of Monomers 11 and Polymers
12
c
λem
f
g
λem
substrate Mn (PDI) λmaxa (ꢀ)b
Φfd
τ
(%wt)
11a
12a
1068 371 (31) 407, 428 0.82
46 000 371 (18) 407, 473 0.29
(1.7)
1020
50 (22%),
410-430
380-400
1060 (78%), 500-520
830
11b
12b
1006 379 (25) 449, 476 0.30
19 000 379 (22) 450, 480 0.10
(1.68)
1040 445 (87) 459, 488, 0.70
520
552
450-470
450-470
80 (78%),
550(22%)
12 400
11c
12c
11d
12d
450-470
27 000 445 (29) 459, 488, 0.11
140 (44%), 450-470
12 400 (56%)
(1.72)
520
1008 382 (53) 425, 451, 0.99
477
29 000 382 (37) 428, 454, 0.18
1080
440-460
130 (50%), 440-470
1010 (50%)
(1.74)
479
598
608
11e
12e
1304 421 (325)
31 000 422 (90)
(1.61)
0.04e
1520
590-610
0.01e 160 (70%), 590-610
1520 (30%)
a Absorption and fluorescence spectra were acquired at 10-5 M in
b
CH2Cl2 (λ in nm). Extinction coefficients (103 M-1 cm-1), based on
the molecular weight of the monomeric unit. c Excitation at λmax d The
.
quantum yield was determined in CH2Cl2 (a-d) by employing
coumarin-1 (Φf ) 0.99 in EtOAc) (ref 19) as the reference. e The
quantum yield was determined in CH2Cl2 by employing ZnTPP (Φf )
0.033 in toluene) (ref 20) as the reference. f Lifetime (ps) was measured
in CH2Cl2. g Monitored wavelength in time-resolved fluorescence
spectroscopy.
We recently reported that the ferrocene moieties in sym-
metrical or unsymmetrical double-stranded polybisnorbornenes
1 form a linear array with an Fe-Fe distance of ∼5.5 Å, the
spacing occupied by each of the monomeric units in these
polymers.7-12 Because of such a short distance, the ferrocene
moieties in 1 and related single- and double-stranded ferrocene
appended polynorbornenes may interact strongly with each other
as revealed by the electrochemical and magnetic studies.12 We
have established that ring-opening metathesis polymerizations
(ROMPs) of the endo-N-aryl-pyrrolidine-fused norbornene
derivatives catalyzed by Grubbs-I catalyst give the correspond-
ing polynorbornenes in homogeneous tacticity with all double
bonds in the trans configuration.7-12 Interactions between these
pending aryl groups might take place during the course of the
polymerization and would be responsible for the stereoselectivity
of the polymerization reaction. Indeed, we have recently shown
a Reaction conditions: (a) 4-bromobenzyl alcohol, Pd(PPh3)4, CuI, iPr2NH,
toluene, 80 °C, 84%; (b) POCl3, DMF, 90 °C, 69%; (c) 6, Pd(PPh3)2Cl2,
DMF, 100 °C, 43%; (d) NaBH4, MeOH, THF, 0 °C, 94%; (e) (i)
LiCt CCH2OTBS, (ii) SnCl2 ·2H2O /50%HOAc, (iii) TBAF, THF, rt, 39%.
constrict the charge mobility.6 Multilayered cyclophanes
offered an interesting model for efficient transannular
π-electronic interactions between aromatic rings.1,2 To the
best of our knowledge, polymeric ladderphanes using planar
aromatic moieties as linkers that are cofacially assembled in
an array are unprecedented.
(7) For a review, see: Luh, T.-Y.; Yang, H.-C.; Lin, N.-T.; Lin, S.-Y.;
Lee, S.-L.; Chen, C.-h. Pure Appl. Chem. 2008, 80, 819.
(8) (a) Yang, H.-C.; Lin, S.-Y.; Yang, H.-C.; Lin, C.-L.; Tsai, L.; Huang,
S.-L.; Chen, I-W. P.; Chen, C.-h.; Jin, B.-Y.; Luh, T.-Y. Angew. Chem.,
Int. Ed. 2006, 45, 726. (b) Yang, H.-C.; Lin, S.-M.; Liu, Y.-H.; Wang,
Y.; Chen, M.-M.; Sheu, H.-S.; Tsou, D.-L.; Lin, C.-H.; Luh, T.-Y. J.
Organomet. Chem. 2006, 691, 3196. (c) Yang, H.-C.; Lee, S.-L.; Chen,
C.-h.; Lin, N.-T.; Yang, H.-C.; Jin, B.-Y.; Luh, T.-Y. Chem. Commun.
2008, 6158.
(5) (a) Sundar, V. C.; Zaumeil, J.; Podzorov, V.; Menard, E.; Willett,
R. L.; Someya, T.; Gershenson, M. E.; Rogers, J. A. Science 2004,
303, 1644. (b) Sakamoto, Y.; Suzuki, T.; Kobayashi, M.; Gao, Y.;
Fukai, Y.; Inoue, Y.; Sato, F.; Tokito, S. J. Am. Chem. Soc. 2004,
126, 8138. (c) Chiang, C.-L.; Wu, M.-F.; Dai, D.-C.; Wen, Y.-S.;
Wang, J.-K.; Chen, C.-T. AdV. Funct. Mater. 2005, 15, 231. (d) Payne,
M. M.; Parkin, S. R.; Anthony, J. E. J. Am. Chem. Soc. 2005, 127,
8028. (e) Miao, Q.; Chi, X.; Xiao, S.; Zeis, R.; Lefenfeld, M.; Siegrist,
T.; Steigerwald, M. L.; Nuckolls, C. J. Am. Chem. Soc. 2006, 128,
1340. (f) Valiyev, F.; Hu, W. S.; Chen, H. Y.; Kuo, M. Y.; Chao, I.;
Tao, Y. T. Chem. Mater. 2007, 19, 3018. (g) Cheng, H.-L.; Chou,
W.-Y.; Kuo, C.-W.; Wang, Y.-W.; Mai, Y.-S.; Tang, F.-C.; Chu, S.-
W. AdV. Funct. Mater. 2008, 18, 285.
(9) Lin, N.-T.; Lin, S.-Y.; Lee, S.-L.; Chen, C.-h.; Hsu, C.-H.; Hwang,
L.-P.; Xie, Z.-Y.; Chen, C.-H.; Huang, S.-L.; Luh, T.-Y. Angew. Chem.,
Int. Ed. 2007, 46, 4481.
(10) (a) Lin, W.-Y.; Murugesh, M. G.; Sudhakar, S.; Yang, H.-C.; Tai,
H.-C.; Chang, C.-S.; Liu, Y.-H.; Wang, Y.; Chen, I.-W. P.; Chen,
C.-h.; Luh, T.-Y. Chem.sEur. J. 2006, 12, 324. (b) Lin, W.-Y.; Wang,
H.-W.; Liu, Z.-C.; Xu, J.; Chen, C.-W.; Yang, Y.-C.; Huang, S.-L.;
Yang, H.-C.; Luh, T.-Y. Chem. Asian J. 2007, 2, 764. (c) Sattigeri,
J. A.; Shiau, C.-W.; Hsu, C. C.; Yeh, F. F.; Liou, S.; Jin, B.-Y.; Luh,
T.-Y. J. Am. Chem. Soc. 1999, 121, 1607.
(6) (a) Horowitz, G.; Bachet, B.; Yassar, A.; Lang, P.; Demanze, F.; Fave,
J. L.; Garnier, F. Chem. Mater. 1995, 7, 1337. (b) Siegrist, T.; Fleming,
R. M.; Haddon, R. C.; Laudise, R. A.; Lovinger, A. J.; Katz, H. E.;
Bridenbaugh, P.; Davis, D. D. J. Mater. Res. 1995, 10, 2170. (c)
Holmes, D.; Kumaraswamy, S.; Matzger, A. J.; Vollhardt, K. P. C.
Chem.sEur. J. 1999, 5, 3399. (d) Cornil, J.; Calbert, J. P.; Bre´das,
J. L. J. Am. Chem. Soc. 2001, 123, 1250. (e) Fritz, S. E.; Martin,
S. M.; Frisbie, C. D.; Ward, M. D.; Toney, M. F. J. Am. Chem. Soc.
2004, 126, 4084. (f) Curtis, M. D.; Cao, J.; Kampf, J. W. J. Am. Chem.
Soc. 2004, 126, 4318.
(11) Wang, H.-W.; Liu, Z.-C.; Chen, C.-H.; Lim, T.-S.; Fann, W.; Chao,
C.-K.; Yu, J.-Y.; Lee, S.-L.; Chen, C.-h.; Huang, S.-L.; Luh, T.-Y.
Chem.sEur. J. 2009, 15, 5719.
(12) Lin, C.-L.; Yang, H.-C.; Lin, N.-T.; Hsu, I.-J.; Wang, Y.; Luh, T.-Y.
Chem. Commun. 2008, 4484.
9
12580 J. AM. CHEM. SOC. VOL. 131, NO. 35, 2009