Ohta et al.
JOCArticle
TABLE 6. Palladium-Catalyzed C-H Olefinationa
TABLE 7. Palladium-Catalyzed C-H Olefination with Use of
Substituted 2-Ethynylanilinesa
entry
catalyst
ligand
base
solvent
yieldb (%)
entry
R1
CF3
CO2Me
CH3
H
R2
indole
product
yieldb (%)
1
2
3
4
5
Pd(OAc)2
Pd(OAc)2
Pd(PPh3)4
Pd(OAc)2
Pd(OAc)2
PPh3
PPh3
CsOAc
CsOAc
CsOAc
KOAc
CsOAc
DMF
DMA
DMA
DMA
DMA
47
65
7
35
32
1
2
3
4
5
H
H
H
7s
7t
7u
7v
7w
9b
9c
9d
9e
9f
64
54
62
62
77
PPh3
dppm
CF3
CO2Me
H
aReactions were carried out with 2-(aminomethyl)indole 7r, palla-
dium catalyst (10 mol %), ligand (20 mol %), and base (2 equiv) in
solvent (2 mL) at 100 °C for 0.5 h. bYields of isolated products.
aReactions were carried out with 2-(aminomethyl)indole 7, Pd(OAc)2
(10 mol %), PPh3 (20 mol %), and CsOAc (2 equiv) in DMA (2 mL) at
100 °C for 0.5 h. bYields of isolated products.
2a and 1-(1-naphthyl)ethylamine 1126 in the presence of
CuBr directly produced a protected calindol 12. The allyl
and tosyl groups on the nitrogen atoms of 12 were easily
removed by successive treatment with Pd(PPh3)4 (2 mol %)/
NDMBA and TBAF to give calindol 13 in 90% yield over
two steps.
We next envisioned the preparation of benzothiazine-1,1-
dioxide derivatives 15 through domino MCR and cycliza-
tion. Since benzo[e][1,2]thiazine-1,1-dioxides are widely
found in biologically active compounds including non-
steroidal anti-inflammatory drugs (NSAIDs),27 various ap-
proaches to construct this structure have been reported.28
We expected that the use of such a sulfonamide as 14, an
aldehyde, and a secondary amine in the presence of a copper
catalyst would bring about a Mannich-type reaction followed
by 6-endo-dig cyclization29 to afford a benzo[e][1,2]thiazine 15.
The reaction of N-methyl- and N-ethylsulfonamides 14a and
convenient and reliable method for the construction of these
frameworks is strongly required.25 We expected that the
present synthesis of 2-(aminomethyl)indoles via domino
three-component coupling-cyclization would bring about
an extremely useful synthetic route to this class of com-
pounds. Thus, we surveyed the construction of polycyclic
indole skeletons by three-component indole formation fol-
lowed by palladium-catalyzed C-H functionalization at the
C-3 position of indoles. First, 2-(aminomethyl)indole 7r
synthesized by the three-component indole formation
(Table 5, entry 6) was subjected to Pd(OAc)2 (10 mol %),
PPh3 (20 mol %), and CsOAc (2 equiv) in DMF (Table 6,
entry 1). The reaction proceeded cleanly to afford tetra-
hydropyridine-fused indole 9a in 47% yield. When DMA
was used as the reaction solvent, a higher yield of 9a was
observed (65%, entry 2). Further investigation of the palla-
dium catalyst, ligand, and base (entries 3-5) revealed that
the conditions shown in entry 2 were most effective. Encour-
aged by this result, we investigated the reaction with several
2-(aminomethyl)indoles containing an electron-withdraw-
ing and -donating group to obtain variously substituted
tetrahydropyridine-fused indoles 9b-f in moderate to good
yields (Table 7).
We next examined construction of polycyclic indoles by
palladium-catalyzed C-H arylation using 2-(aminomethyl)-
indole 7x, which was prepared from ethynylaniline 1a and
amine 3h (Table 5, entry 12). By treatment with 20 mol % of
Pd(OAc)2 and 40 mol % of PPh3, dihydrobenzazepine-fused
indole 10 was efficiently obtained in 80% yield over 2 steps
(Scheme 3). One-pot three-component indole formation/Pd-
catalyzed C-H arylation also provided polycyclic indole 10
in 84% yield from 1a.
Synthetic Application to Calindol, Benzo[e][1,2]thiazines,
and Indene. Calindol (13), which contains a 2-(aminomethyl)-
indole motif, is a positive modulator of the human Ca2þ
receptor showing a calcimimetic activity.4 This compound
could be easily synthesized by using our domino three-
component indole formation (Scheme 4). As we expected,
the reaction of 2-ethynylaniline 1a with paraformaldehyde
(26) For the preparation of 11, see the Supporting Information.
(27) (a) Lombardino, J. G.; Wiesman, E. H. J. Med. Chem. 1971, 14, 973–
977. (b) Lombardino, J. G.; Wiesman, E. H.; McLamore, W. M. J. Med.
Chem. 1971, 14, 1171–1175. (c) Lombardino, J. G.; Wiesman, E. H. J. Med.
Chem. 1972, 15, 848–849. (d) Zinnes, H.; Lindo, N. A.; Sircar, J. C.;
Schwartz, M. L.; Shavel, J., Jr. J. Med. Chem. 1973, 16, 44–48. (e) Zinnes,
H.; Sircar, J. C.; Lindo, N.; Schwartz, M. L.; Fabian, A. C.; Shavel, J., Jr.;
Kasulanis, C. F.; Genzer, J. D.; Lutomski, C.; DiPasquale, G. J. Med. Chem.
1982, 25, 12–18. (f) Kwon, S.-K.; Park, M.-S. Arch. Pharm. Res. 1992, 15,
251–255. (g) Lazer, E. S.; Miao, C. K.; Cywin, C. L.; Sorcek, R.; Wong, H.-
C.; Meng, Z.; Potocki, I.; Hoermann, M.; Snow, R. J.; Tschantz, M. A.;
Kelly, T. A.; McNeil, D. W.; Coutts, S. J.; Churchill, L.; Graham, A. G.;
David, E.; Grob, P. M.; Engel, W.; Meier, H.; Trummlitz, G. J. Med. Chem.
1997, 40, 980–989. (h) Lee, E. B.; Kwon, S. K.; Kim, S. G. Arch. Pharm. Res.
1999, 22, 44–47.
(28) (a) Watanabe, H.; Mao, C.-L.; Barnish, I. T.; Hauser, C. R. J. Org.
Chem. 1969, 34, 919–926. (b) Lombardino, J. G.; Kuhla, D. E. Adv.
Heterocycl. Chem. 1981, 28, 73–126. (c) Motherwell, W. B.; Pennell, A. M.
K. J. Chem. Soc., Chem. Commun. 1991, 877–879. (d) Nemazanyi, A. G.;
Volovenko, Y. M.; Neshchadimenko, V. V.; Babichev, F. S. Chem. Hetero-
ꢀ
cycl. Compd. 1992, 28, 220–222. (e) Manjarrez, N.; Perez, H. I.; Sorıs, A.;
´
Luna, H. Synth. Commun. 1996, 26, 585–591. (f) Manjarrez, N.; Perez, H. I.;
ꢀ
Sorıs, A.; Luna, H. Synth. Commun. 1996, 26, 1405–1410. (g) Takahashi, M.;
´
Morimoto, T.; Isogai, K.; Tsuchiya, S.; Mizumoto, K. Heterocycles 2001, 55,
1759–1769. (h) Layman, W. J.; Greenwood, T. D.; Downey, A. L.; Wolfe, J.
F. J. Org. Chem. 2005, 70, 9147–9155. (i) Vidal, A.; Madelmont, J.-C.;
Mounetou, E. Synthesis 2006, 591–593. (j) Aliyenne, A. O.; Kraiem, J.;
Kacem, Y.; Hassine, B. B. Tetrahedron Lett. 2008, 49, 1473–1475. (k) Zia-ur-
Rehman, M.; Choudary, J. A.; Elsegood, M. R. J.; Siddiqui, H. L.; Khan, K.
M. Eur. J. Med. Chem. 2009, 44, 1311–1316.
(25) For recent synthesis of polycyclic indoles, see: (a) Kusama, H.;
Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2002, 124, 11592–11593. (b)
Bandini, M.; Melloni, A.; Piccinelli, F.; Sinisi, R.; Tommasi, S.; Umani-
Ronchi, A. J. Am. Chem. Soc. 2006, 128, 1424–1425. (c) Kuroda, N.;
Takahashi, Y.; Yoshinaga, K.; Mukai, C. Org. Lett. 2006, 8, 1843–1845.
(29) Related synthesis of thiazines already has been reported, see:
(a) Barange, D. K.; Batchu, V. R.; Gorja, D.; Pattabiraman, V. R.; Tatini,
L. K.; Babu, J. M.; Pal, M. Tetrahedron 2007, 63, 1775–1789. (b) Barange, D.
K.; Nishad, T. C.; Swamy, N. K.; Bandameedi, V.; Kumar, D.; Sreekanth, B.
R.; Vyas, K.; Pal, M. J. Org. Chem. 2007, 72, 8547–8550.
7056 J. Org. Chem. Vol. 74, No. 18, 2009