Communication
Macromolecules, Vol. 43, No. 1, 2010 23
ESI MS. Two novel AB2 macromonomers bearing ω-dithiobenzoate
and R-double bromoester end-groups were utilized to prepare
functionalized and defined multiblock/lightly branched and
hyperbranched polymers. Excess R-bromoester functionalities
could be modified easily to other functionalities on the periphery
of these multiblock/lightly branched and hyperbranched struc-
tures and provide potential anchoring points for graft polymeriza-
tions via ATRP/SET-LRP or other metal-catalyzed living radical
processes.
Acknowledgment. The authors acknowledge the receipt of
Discovery Grants from the Australian Research Council (ARC).
T.P.D. is also thankful for a Federation Fellowship from the
ARC.
Supporting Information Available: Experimental details.
This material is available free of charge via the Internet at
References and Notes
(1) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed.
2001, 40, 2004–2021.
Figure 3. GPC traces (RI signal) monitoring aminolysis of AB2 macro-
(2) (a) Moses, J. E.; Moorhouse, A. D. Chem. Soc. Rev. 2007, 36, 1249–
1262. (b) Amblard, F.; Cho, J. H.; Schinazi, R. F. Chem. Rev. 2009, 109,
4207–4220. (c) Barner-Kowollik, C.; Inglis, A. J. Macromol. Chem.
Phys. 2009, 210, 987–992. (d) Barner, L. Adv. Mater. 2009, 21, 2547–
2553. (e) Best, M. D. Biochemistry 2009, 48, 6571–6584. (f) Wang, Z.;
Cohen, S. M. Chem. Soc. Rev. 2009, 35, 1315–1329.
monomers: (A) AB2 macromonomer 8 (Mn,GPC=7830 Da, Mn,NMR
=
9100 Da, PDI=1.10); (B) AB2 macromonomer 9 (Mn,GPC=5390 Da,
Mn,NMR=6050 Da, PDI=1.10) at different time points. Aminolysis
conditions: [macromonomers]0/[hexylamine]0/[TEA]0 = 1/1/2; room
temperature; solvent: acetonitrile.
(3) (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem., Int. Ed. 2002, 41, 2596–2599. (b) Vestberg, R.;
Malkoch, M.; Kade, M.; Wu, P.; Fokin, V. V.; Sharpless, K. B.;
Drockenmuller, E.; Hawker, C. J. J. Polym. Sci., Part A: Polym.
Chem. 2007, 45, 2835–2846. (c) Lutz, J.-F. Angew. Chem., Int. Ed.
2007, 46, 1018–1025. (d) Tornoe, C. W.; Christensen, C.; Meldal, M.
J. Org. Chem. 2002, 67, 3057–3064. (e) Joralemon, M. J.; O'Reilly,
R. K.; Matson, J. B.; Nugent, A. K.; Hawker, C. J.; Wooley, K. L.
Macromolecules 2005, 38, 5436–5443. (f) O'Reilly, R. K.; Joralemon,
M. J.; Hawker, C. J.; Wooley, K. L. J. Polym. Sci., Part A: Polym.
Chem. 2006, 44, 5203–5217.
(4) (a) A Virtual Issue of Macromolecules: “Click Chemistry in Macro-
molecular Science.”Macromolecules 2009, 42, 3827-3829. (b) Fournier,
D.; Hoogenboom, R.; Schubert, U. S. Chem. Soc. Rev. 2007, 36, 1369–
1380. (c) Hawker, C. J.; Wooley, K. L. Science 2005, 309, 1200–1205.
(d) Franc, G.; Kakkar, A. Chem. Commun. 2008, 5267–5276. (e) Bock,
V. D.; Hiemstra, H.; van Maarseveen, J. H. Eur. J. Org. Chem. 2005, 1,
5267–5276. (f) de Graaf, A. J.; Kooijman, M.; Hennink, W. E.; Mastrobattista,
E. Bioconjugate Chem. 2009, 20, 1281–1295.
reactivity of the secondary R-bromoester functionality, as evi-
denced in the model reaction, favors reaction at the chain termini,
and hence formation of a linear/lightly branched species, with
steric effects due to the polymer backbone significantly, reducing
the reactivity of pendent R-bromoester functionality. However,
with macromonomer9, the difference in reactivity between chain-
end and pendant R-bromoester groups is not as dramatic. From
the model reaction with EBiB it is clear that the thio-bromo
reaction is slow, at least relative to MBP, requiring >20 h of
reaction time to reach high yields. Clearly, the reactivity of the
already sterically hindered tertiary R-bromoester is little affected
by being located at a chain terminus or as a pendant functional
group. As such, it appears that if the spacer between the polymer
backbone and the pendant functionality is short, then in an AB2
macromonomer with an inherent high reactivity between A and B
that the formation of a linear/lightly branched polymer is favored
whereas a low reactivity between A and B tends to favor the
formation of a hyperbranched species.15a,17
(5) (a) Gacal, B.; Akat, H.; Balta, D. K.; Arsu, N.; Yagci, Y. Macro-
molecules 2008, 41, 2401–2405. (b) Meng Shi; Wosnick, J. H.; Ho, K.;
Keating, A.; Shoichet, M. S. Angew. Chem., Int. Ed. 2007, 46, 6126–
6131.
It should also be noted that in any typical ABn polymerization
intramolecular cyclization is always a potential, undesirable side
reaction. However, in this present work, provided optimized
conditions are used, no cyclic structures could be identified from
the GPC curves (Figure 3).
The excess bromoester functionality in the multiblock/lightly
branched or hyperbranched structures can be proven by 1H
NMR spectroscopy (Figure S6). After aminolysis, the protons
(1, 2, 3) associated with the dithiobenzoate disappeared completely,
while the methine proton (6) in the monomer repeat unit close to
the thiocarbonylthio group moved to a lower chemical shift, and
the integration of overlapped peaks 4 and 5 decreased. After post-
treatment of the aminolysis product 10 with excess benzyl
mercaptam (Figure S6C in the Supporting Information), a
further decrease in the integration of peaks 4 and 5 verified the
presence of bromoester functionality after aminolysis.
(6) Gilmore, J. M.; Scheck, R. A.; Esser-Kahn, A. P.; Joshi, N. S.;
Francis, M. B. Angew. Chem., Int. Ed. 2006, 45, 5307–5311.
(7) See for example: (a) Becer, C. R.; Hoogenboom, R.; Schubert,
U. S. Angew. Chem., Int. Ed. 2009, 48, 4900–4908. (b) Dondoni, A.
Angew. Chem., Int. Ed. 2008, 47, 8995–8997. (c) Hoyle, C. E.; Lee,
T. Y.; Roper, T. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 5301–
5338. (d) Koehn, M. J. Peptide Sci. 2009, 15, 393–397.
(8) See for example: (a) Killops, K. L.; Campos, L. M.; Hawker, C. J.
J. Am. Chem. Soc. 2008, 130, 5062–5064. (b) Campos, L. M.; Killops,
K. L.; Sakai, R.; Paulusse, J. M. J.; Damiron, D.; Drockenmuller, E.;
Messmore, B. W.; Hawker, C. J. Macromolecules 2008, 41, 7063–
7070. (c) Carioscia, J. A.; Schneidewind, L.; O'Brien, C.; Ely, R.;
Feeser, C.; Cramer, N.; Bowman, C. N. J. Polym. Sci., Part A: Polym.
Chem. 2007, 45, 5686–5696. (d) Li, Q.; Zhou, H.; Wicks, D. A.; Hoyle,
C. E. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 5103–5111.
(e) Chan, J. W.; Hoyle, C. E.; Lowe, A. B. J. Am. Chem. Soc. 2009,
131, 5751–5753. (f) Chan, J. W.; Zhou, H.; Hoyle, C. E.; Lowe, A. B.
Chem. Mater. 2009, 21, 1579–1585. (g) David, R. L. A.; Kornfield,
J. A. Macromolecules 2008, 41, 1151–1161. (h) Chen, G.; Amajjahe,
S.; Stenzel, M. H. Chem. Commun. 2009, 1198–1200. (i) Gu, W.; Chen,
G.; Stenzel, M. H. J. Polym. Sci., Part A: Polym. Chem. 2009, 47,
5550–5556. (j) Jone, M. W.; Mantovani, G.; Ryan, S. M.; Wang, X.;
Brayden, D. J.; Haddleton, D. M. Chem. Commun. 2009, 5272–5274.
In conclusion, thio-bromo “click” reactions between in situ
generated thiolsobtained by the aminolysis of RAFT-synthesized
polymers and R-bromoesters was simulated by a model reaction
and the products characterized by GPC, NMR spectroscopy, and