Page 3 of 4
ChemComm
Please do not adjust margins
Journal Name
COMMUNICATION
To shed light on the mechanism of this transformation, trifluoromethane sulfonyl radical adds to the substrate 1a to
several control experiments were carried out as described in form radical intermediate A. Finally,DOthI:e10.1in03te9/rCm9eCdCi0a3t0e96AD
Scheme 2. Only a trace amount of desired product 3aa was converts to the desired product 3aa through the capture
detected when TEMPO was employed for this reaction. hydrogen radical from the (EtO)2P(O)H.
Meanwhile, the hydrogen radical was captured by TEMPO and
In conclusion, we develop a convenient and efficient method
the important intermediate of m/z = 157 was detected by the to achieve the allylic triflylation. In the presence of (EtO)2P(O)H,
GCMS, which was 2,2,6,6-tetramethylpiperidin-1-ol (Figure S1). various substituted groups on allenes proceed smoothly, and
When BHT was added to the reaction system, none of the the desired products are afforded with moderate to good
desired product was observed. Thus, this result suggested that yields.
the reaction was a radical process. As the only trace amount of
This work was supported by the National Natural Science
the target product 3aa was detected without (EtO)2P(O)H, this Foundation of China (21672086) and the Fundamental
result demonstrated that hydrogen was derived from Research Funds for the Central Universities (lzujbky-2018-81).
(EtO)2P(O)H. And the GC-MS measurement was also
performed with A by following the standard conditions for 60
min. The important peaks at m/z = 172 was observed and the
Notes and references
(EtO)2POCl was also confirmed (Figure S2). These results
indicated that (EtO)2P(O)Cl and hydrogen radical exist in this
1
(a) X.-H. Xu, K. Matsuzaki and N. Shibata, Chem. Rev. 2015,
115, 731; (b) T. Liang, C. N. Neumann and T. Ritter, Angew.
Chem. 2013, 125, 8372; Angew. Chem., Int. Ed. 2013, 52,
8214; (c) T. Besset, T. Poisson and X. Pannecoucke, Chem.
Eur. J. 2014, 20, 16830; (d) W. K. Hagmann, J. Med. Chem.
2008, 51, 4359; (e) N. A. Meanwell, J. Med. Chem. 2011, 54,
2529; (f) J. Wang, M. Sanchez-Rosello, J. L. Acena, C. del Pozo,
A. E. Sorochinsky, S. Fustero, V. A. Soloshonok and H. Liu,
Chem. Rev. 2014, 114, 2432.
(a) Z. Yuan, H.-Y. Wang, X. Mu, P. Chen, Y.-L. Guo and G. Liu, J.
Am. Chem. Soc., 2015, 137, 2468; (b) K. Muller, C. Faeh and F.
Diederich, Science., 2007, 317, 1881; (c) S. Purser, P.-R.
Moore, S. Swallow and V. Gouverneur, Chem. Soc. Rev., 2008,
37, 320; (d) W.-K. Hagmann, J.Med. Chem., 2008, 51, 4359;
(e) N.-A. Meanwell, J. Med. Chem., 2011, 54, 2529; (f) M.
Cametti, B. Crousse, P. Metrangolo, R. Milani and G. Resnati,
Chem. Soc. Rev., 2012, 41, 31; (g) J. Wang, M. Sánchez-
Roselló, J.-L. Aceña, C. del Pozo, A.-E. Sorochinsky, S. Fustero,
V. A. Soloshonok and H. Liu, Chem. Rev., 2014, 114, 2432.
(a) G. Danoun, B. Bayarmagnai, M. F. Gruenberg and L. J.
Goossen, Chem. Sci., 2014, 5, 1312; (b) C. Matheis, K. Jouvin
and L. J. Goossen, Org. Lett., 2014, 16, 5984; (c) G. Danoun, B.
Bayarmagnai, M. F. Grünberg and L.-J. Gooßen, Angew.
Chem. Int. Ed., 2013, 52, 7972; (d) C. Hansch, A. Leo and R.-
W. Taft, Chem. Rev., 1991, 91, 165; (e) W. Sheppard, J. Am.
Chem. Soc., 1963, 85, 1314; (f) J. B. Hendrickson, A. Giga and
J. Wareing, J. Am.Chem. Soc., 1974, 96, 2275; (g) R. Goumont,
E. Kizilian, E. Buncel and F. Terrier, Org. Biomol. Chem., 2003,
1, 1741.
transformation.
Significantly,
submitting
(1-
cyclopropylvinyl)benzene to the standard conditions afforded
(E)-(1-((trifluoromethyl)sulfonyl)pent-2-en-2-yl)benzene 5aa in
40% yield, which meant that the trifluoromethane sulfonyl
radical existed in this transformation.
2
Scheme 2 Control experiments.
(EtO)2P(O)H(2.0 equiv)
TEMPO (2.0 equiv)
O
(1)
C
CF3SO2Cl
Ph
S
O
CF3
Ph
toluene, 100 oC, air
H
2a
3aa
1a
(trace)
(EtO)2P(O)H(2.0 equiv)
BHT (2.0 equiv)
O
S
O
C
CF3SO2Cl
Ph
Ph
(2)
(3)
(4)
CF3
Ph
Ph
toluene, 100 oC, air
H
2a
3aa
1a
(trace)
3
O
toluene, 100 oC, air
C
CF3SO2Cl
S
CF3
O
H
2a
3aa
1a
(trace)
(EtO)2P(O)H(2.0 equiv)
toluene, 100 oC, air
O
S
CF3
CF3SO2Cl
Ph
Ph
5aa
O
1ac
2a
(40%, E)
4
5
A. R. Usera, P.-M. Dolan, T. W. Kensler and G. H. Posner,
Bioorg. Med. Chem., 2007, 15, 5509.
Scheme 3 Proposed mechanism.
(a) H. Yanagisawa, S. Ishihara, A. Ando, T. Kanazaki. S.
Miyamoto, H. Koike, Y. Iijima, K. Oizumi, Y. Matsushita and T.
Hata, J. Med. Chem., 1987, 30, 1984; (b) M. H Ansari, M.
Ahmad and K. A Dicke, Bioorg. Med. Chem., 1993, 3, 1071.
(a) H. Yanai, M. Fujita and T. Taguchi, Chem. Commun., 2011,
47, 7245; (b) H. Kawai, Z. Yuan, E. Tokunaga and N. Shibata,
Org. Lett., 2012, 14, 5330; (c) X.-H. Xu, M. Taniguchi, X. Wang,
E. Tokunaga, T. Ozawa, H. Masuda and N. Shibata, Angew.
Chem. Int. Ed., 2013, 52, 12628; (d) H. Il. Kong, M. A. Gill, A.
H. Hrdina, J. E. Crichton and J. M. Manthorpe, J. Fluorine
Chem., 2013, 153, 151; (e) B. Alcaide, P. Almendros and C.
Lazaro-Milla, Chem. Commun., 2015, 51, 6992; (f) X. Zhao, Y.
Huang, F.-L. Qing and X.-H. Xu, RSC. Adv., 2017, 7, 47; (g) P.
Das and N. Shibata, J. Org. Chem., 2017, 82, 11915; (h) P. Das,
S. Gondo, E. Tokunaga, Y. Sumii and N. Shibata, Org. Lett.,
2018, 20, 558; (i) P. Das, S. Gondo, E. Tokunaga, Y. Sumii and
N. Shibata, Org. Lett., 2018, 20, 558.
O
S
O
S
(a)
F3C
Cl
F3C
Cl
(EtO)2P(O)Cl
O
O
6
2a
Cl
(EtO)2P(O)
(EtO)2P(O)H
CF3SO2
O
O
(b)
C
Ph
S
Ph
S
CF3
CF3
Ph
O
O
H
1a
A
3aa
Based on these experimental results and previous
mechanistic studies, a possible mechanism is proposed in
Scheme 3. Initially, trifluoromethane sulfonyl chloride 2a is
transformed into trifluoromethane sulfonyl radical and
chlorine radical under the standard conditions. Then the
7
(a) X. Creary, J. Org. Chem., 1980, 45, 2727; (b) J.-B.
Hendrickson, D. A. Judelson and T. Chancellor, Synthesis,
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins