S. Kyi et al. / Bioorg. Med. Chem. Lett. 20 (2010) 4555–4557
4557
Table 2
species is resistant to most currently available antimicrobial agents
(Table 3).
Antifungal activities of selected compounds
We have described a convenient and high yielding methodology
to prepare polyacetylene substituted 2-hydroxy acids, esters and
amides 31–45 through the hydrolysis, transesterification or ami-
nolysis of diacetal protected polyacetylenic substituted 2-hydroxy
acids 21–30. Twenty one of these novel compounds were tested
against 10 microbes of clinical importance and in particular most
of the compounds showed strong activity against P. aeruginosa.
Additionally carboxylic acids 39–43, and methyl esters 44 and 47
showed activity against C. parapsilosis. This is a significant result,
since this P. aeruginosa is resistant to most currently available anti-
microbial agents. Future work will focus upon the biological activity
of other 2-hydroxy polyacetylene variants and the determination of
structure–activity relationships.
Products
IC50 range for Candida species (
l
M)
C. albicans C. glabrata
C. tropicalis C. krusei
C. parapsilosis
25
26
28
30
32
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
500–1000
500–1000
500–1000 ꢀ500
500–1000 500–1000
500–1000
500–1000
500–1000 500–1000
1000–2000
500–1000
500–1000
500–1000 ꢀ250
500–1000 ꢀ2
ꢀ1000
2–4
500–1000
500–1000
500–1000 2–4
500–1000 125–250
ꢀ30
Acknowledgments
We thank the GRDC (Grains Research and Development Corpo-
ration), Australia for financial support and Drs. Kathleen Turner
and Craig Francis for critical comments on the manuscript.
ꢀ1000
ꢀ500
ꢀ1000
Supplementary data
Blanks spaces indicate no inhibition.
Supplementary data (full experimental details and characteriza-
tion data for all new compounds) associated with this article can
Table 3
Inhibition of bacterial growth
Products S. aureus
P. aeruginosa E. coli
S. pyogenes MRSA
ATCC 25923 ATCC 27853 ATCC 25922 ATCC 19615 clinical isolate
References and notes
25
26
28
30
32
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
+
+
+
++
++
+++
+++
+++
+++
+
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
++
++
++
++
+++
+++
+++
++
++
À
+++
+++
+++
+++
+++
+++
+++
+++
+++
À
+
+
+
+
+
+
1. Dembitsky, V. M.; Levitsky, D. O. Nat. Prod. Commun. 2006, 1, 405.
2. Dembitsky, V. M. Lipids 2006, 41, 883.
3. Christensen, L. P.; Brandt, K. Pharm. Biomed. Anal. 2006, 41, 683.
4. Ebermann, R.; Alth, G.; Kreitner, M.; Kubin, A. J. Photochem. Photobiol., B 1996,
36, 95.
5. Heinrich, M.; Robles, M.; West, J. E.; Ortiz de Montellano, B. R.; Rodriguez, E.
Annu. Rev. Pharmacol. Toxicol. 1998, 38, 539.
6. Alves, D.; Nogueira, C. W.; Zeni, G. Tetrahedron Lett. 2005, 46, 8761.
7. Quinoa, E.; Crews, P. Tetrahedron Lett. 1988, 29, 2037.
8. Zeni, G.; Panatieri, R. B.; Lissner, E.; Menezes, P. H.; Braga, A. L.; Stefani, H. A.
Org. Lett. 2001, 3, 819.
9. Lopez, S.; Fernandez-Trillo, F.; Castedo, L.; Saa, C. Org. Lett. 2003, 5, 3725.
10. Graichen, F. H. M.; Kyi, S.; O’Shea, M. S.; Warden, A. C. WO/2009/111830, 2009,
conjugated unsaturated compounds.
+++
+++
+++
À
++
À
À
+
À
+
++
+++
++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+
+++
+++
+++
++
+
+++
+++
+++
+
++
++
++
++
++
11. Alami, M.; Ferri, F. Tetrahedron Lett. 1996, 16, 2763.
12. Preparative Acetylenic Chemistry; Brandsma, L., Ed.; Elsevier: Amsterdam, 1988.
13. Coleman, B. E.; Cwynar, V.; Hart, D. J.; Havas, F.; Mohan, J. M.; Patterson, S.;
Ridenour, S.; Schmidt, M.; Smith, E.; Wells, A. J. Synlett 2004, 1339.
14. Antunes, L. M.; Organ, M. G. Tetrahedron Lett. 2003, 44, 6805.
15. Munakata, R.; Ueki, T.; Katakai, H.; Takao, K.; Tadano, K. Org. Lett. 2001, 3, 3029.
16. Carpita, A.; Neri, D.; Rossi, R. Gazz. Chim. Ital. 1987, 117, 481.
17. Sandri, J.; Viala, J. Synth. Commun. 1992, 22, 2945.
18. Liu, J.; Swidorski, J. J.; Peters, S. D.; Hsung, R. P. J. Org. Chem. 2005, 70, 3898.
19. The conversions into the halides were carried out under very mild conditions,
which had no impact on the sensitive polyacetylene functionality.
20. Ley, S. V.; Diez, E.; Dixon, D. J.; Guy, R. T.; Michel, P.; Nattrass, G. L.; Sheppard, T.
D. Org. Biomol. Chem. 2004, 2, 3608.
+
+
+
++
++
+++
++
+++
Reduction in optical density (OD595) compared with control without compound:
+++ >75%, ++ 50%, À 75%, + between 25% and 50%.
and Candida parapsilosis) were chosen. The results are summarized
in Table 2. Carboxylic acids 39, 40, and 43 inhibited all species.
Of the other compounds carboxylic acids 34, 35, 41, and 42
and methyl ester 44 and 47 inhibited specific species. The latter
does not set any precedent, since these yeasts are known to
have different susceptibilities to some existing antifungals
such as fluconazole.28 Like C. albicans, C. glabrata and C. krusei,
C. parapsilosis displayed much higher sensitivity to carboxylic acids
39–43, and methyl esters 44 and 47. Larger esters or amides were
inactive.
Assay against bacterial species—Four reference strains and a
clinical isolate of methicillin-resistant Staphylococcus aureus were
used in this study. All compounds, except 38, 39, and 40, showed
activity against all five bacterial species tested. The strong activity
of all compounds against P. aeruginosa is very significant, since this
21. Diez, E.; Dixon, D. J.; Ley, S. V. Angew. Chem., Int. Ed. 2001, 40, 2906.
22. Ley, S. V.; Michel, P. Synlett 2001, 1793.
23. Butane-2,3-diacetal of glycolic acid was prepared by treating glycolic acid with
2,3-dimethoxybutadiene in the presence of catalytic triphenylphosphine
hydrobromide. 2,3-Dimethoxybutadiene can be obtained commercially or
prepared using a technique described in the literature.21,22
24. McDonald, E.; Suksamrarn, A.; Wylie, R. D. J. Chem. Soc., Perkin Trans.1 1979,
1893.
25. After 15 min the reaction mixture was warmed to À50 °C to À40 °C, prior to
addition of the iodo-polyacetylene compounds. The excess of base did not lead
to dialkylation of BDA protected glycolic acid and had no impact on the
sensitive diyne functionality of our electrophiles. The slightly increased
temperature was necessary to avoid the precipitation of the iodides in the
reaction mixture at À78 °C.
26. Warden, A. C.; Graichen, F. H. M.; O’Shea, M. S. WO/2008/031157, 2008,
acetylenic compounds.
27. Graichen, F. H. M.; Warden, A. C.; Kyi, S.; O’Shea, M. S. Aust. J. Chem. 2010, 63,
719.
28. Samaranayake, Y. H.; Samaranayake, L. P. J. Med. Microbiol. 1994, 41, 295.