pubs.acs.org/joc
intermolecular C-C bond formation, the corresponding
Asymmetric Synthesis of Aminochromanes via
Intramolecular Indium-Mediated Allylation of Chiral
Hydrazones
intramolecular cyclizations are somewhat limited. Examples
include the cyclization of enynes,4 cyclization of tethered
propargyl bromides to carbonyl compounds,5 Pd/In-
mediated cyclization,6 atom-transfer cyclization,7 intramole-
cular allylindation of terminal alkynes,8 and cyclization via
hydrometalation of alkynes.9 As part of our continued effort
to expand the synthetic utility of organoindium reagents, we
disclose for the first time an efficient asymmetric indium-
mediated intramolecular cyclization of chiral hydrazone
derivatives and its application toward the synthesis of
chromane antibiotics.
Hydrazones are relatively stable imine equivalents and are
significantly less reactive than imines. Consequently, there
are fewer reports of organometallic addition to hydrazones
than to imines.10 Due to their greater reactivity, imines are
also prone to hydrolytic degradation and tend to be unstable
during purification or prolonged storage. This is particularly
problematic for aliphatic imines.11 This limits their utility as
precursors for chiral amine compounds. Therefore, addition
of carbon fragments to CdNX bonds (where X=stabilizing
group) and related compounds are increasingly being used
for the synthesis of chiral amines.12 Practical catalytic,
enantioselective addition to CdN bonds is highly desir-
able.13 Chiral auxiliaries offer a useful approach for chiral
amine synthesis. The use of a stabilizing group allows a chiral
auxiliary to be incorporated and cleaved without affecting
the efficiency of the process.14,15
Debasis Samanta, Robert B. Kargbo, and Gregory
R. Cook*
Department of Chemistry and Molecular Biology, North
Dakota State University, Department 2735, P.O. Box 6050,
Fargo, North Dakota 58108-6050
Received June 5, 2009
The asymmetric intramolecular indium-mediated cycliza-
tion reaction delivers chromanes with excellent diaster-
eoselectivity (68-91% yield, dr >99:1). The reaction was
efficient for aryl substrates with both electron-withdraw-
ing and -donating groups. Carboxylic acid additives were
found to be necessary for optimal reaction.
We have reported several examples of highly efficient stereo-
selective intermolecular allylations of chiral hydrazones.16
(4) Lee, P. H.; Kim, S.; Lee, K.; Seomoon, D.; Kim, H.; Lee, S.; Kim, M.;
Han, M.; Noh, K.; Livinghouse, T. Org. Lett. 2004, 6, 4825.
(5) Kang, H.-Y.; Kim, Y.-T.; Yu, Y.-K.; Cha, J. W.; Cho, Y. S.; Koh, H.
Y. Synlett 2004, 45.
(6) (a) Kang, S.-K.; Lee, S.-W.; Jung, J.; Lim, Y. J. Org. Chem. 2002, 67,
4376. (b) Nguyen, V. C.; Kim, Y.-T.; Yu, Y.-K.; Kang, H.-Y. Bull. Korean
Chem. Soc. 2005, 26, 711.
(7) (a) Yanada, R.; Nishimori, N.; Matsumura, A.; Fujii, N.; Takemoto,
Y. Tetrahedron Lett. 2002, 43, 4585. (b) Cook, G. R.; Hayashi, R. Org. Lett.
2006, 8, 1045.
(8) (a) Nair, V.; Ros, S.; Jayan, C. N.; Pillai, B. S. Tetrahedron 2004, 60,
1959. (b) Salter, M. M.; Sardo-Inffiri, S. Synlett 2002, 2068.
(9) Takami, K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2002, 4, 2993.
(10) (a) Kobayashi, S.; Hamada, T.; Manabe, K. J. Am. Chem. Soc. 2002,
124, 5640. (b) Friestad, G. K.; Ding, H. Angew. Chem., Int. Ed. 2001, 40,
4491. (c) Burk, M. J.; Feaster, J. E. J. Am. Chem. Soc. 1992, 114, 6266. (d)
Kadota, J.; Park, J.-Y.; Yamamoto, Y. Chem. Commun. 1996, 841.
(11) Jacobsen, M. F.;Ionita, L.;Skrydstrup, T.J. Org. Chem. 2004, 69, 4792.
(12) (a) Friestad, G. K.;Shen, Y.;Ruggles, E. L.Angew. Chem., Int. Ed. 2003,
42, 5061. (b) Friestad, G. K.; Qin, G. K, J. J. Am. Chem. Soc. 2001, 123, 9922.
(13) (a) Saaby, S.; Fang, X.; Gathergood, N.; Jørgensen, K. A. Angew.
Chem., Int. Ed. 2000, 112, 4280. (b) Saaby, S.; Bayo, P.; Aburel, P. S.;
Jørgensen, K. A. J. Org. Chem. 2002, 67, 4352. (c) Johannsen, M. Chem.
Commun. 1999, 2233.
Chiral amine compounds display unique biological prop-
erties, and this has inspired a great deal of effort in the
development of asymmetric methods for their synthesis.1
Furthermore, the increased need for enantiopure medicinal
compounds and the rapid advancement for the field of
asymmetric synthesis encourages the development of syn-
thetic methods that utilize reagents and promoters of low
relative toxicity.2 Indium has emerged as a metal of high
potential in organic synthesis because of its unique proper-
ties. For example, indium metal is relatively unaffected by air
or oxygen at ambient temperatures and can be handled safely
without apparent toxicity. Allyl indium reagents are also
tolerant of many functional groups and display low basicity
and selective nucleophilicity, which permits excellent che-
moselective transformations.3 Despite its extensive utility in
(14) (a) Maryanoff, B. E.; Zhang, H,-C.; Cohen, J. H.; Turchi, I. J.;
Maryanoff, C. A. Chem. Rev. 2004, 104, 1431. (b) Weinreb, S. M. Top. Curr.
Chem. 1997, 190, 131. (c) Weinreb, S. M.; Orr, R. K. Synthesis 2005, 1205.
(15) (a) Friestad, G. K. Eur. J. Org. Chem. 2005, 3157. (b) Enders, D.;
Reinhold, U. Tetrahedron: Asymmetry 1997, 8, 1895. (c) Davis, F. A.; Zhou,
P.; Chen, B.-C. Chem. Soc. Rev. 1998, 27, 13. (d) Bloch, R. Chem. Rev. 1998,
98, 1407. (e) Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002,
35, 984. (f) Job, A.; Janeck, C. F.; Bettray, W.; Peters, R.; Enders, D.
Tetrahedron 2002, 58, 2253. (g) Zhou, P.; Chen, B.; Davis, F. A. Tetrahedron
2004, 60, 8003. (h) Friestad, G. K. Eur. J. Org. Chem. 2005, 3157. (i) Ogawa,
C.; Sugiura, M.; Kobayashi, S. J. Org. Chem. 2002, 67, 5359.
(16) Cook, G. R.; Maity, B. C.; Kargbo, R. Org. Lett. 2004, 6, 1741.
(1) (a) Friestad, G. K.; Mathies, A. K. Tetrahedron 2007, 63, 2541–2569.
(b) Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069. (c) Bloch, R. Chem.
Rev. 1998, 98, 1407. (d) Enders, D.; Reinhold, U. Tetrahedron: Asymmetry
1997, 8, 1895. (e) Denmark, S. E.; Nicaise, O. J.-C. Chem. Commun. 1996,
999.
(2) (a) Li, C.-J. Chem. Rev. 1993, 93, 2023. (b) Noyori, R. Green Chem.
2003, 5, G37. (c) Lindstrom, U. M. Chem. Rev. 2002, 102, 2751. (d) Yanada,
R.; Obika, S.; Nishimori, N.; Yamauchi, M.; Takemoto, Y. Tetrahedron
Lett. 2004, 45, 2331. (e) Li, C.-J. Acc. Chem. Res. 2002, 35, 533.
(3) (a) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2002, 102, 4009.
(b) Ranu, B. C.; Dutta, J.; Guchhait, S. K. J. Org. Chem. 2001, 66, 5624.
DOI: 10.1021/jo901195g
r
Published on Web 08/24/2009
J. Org. Chem. 2009, 74, 7183–7186 7183
2009 American Chemical Society