5282
C. Han et al. / Tetrahedron Letters 50 (2009) 5280–5282
OR
OR
Acknowledgments
-0.06
-0.08
+0.12
-0.03
-0.02
MeO
This work was supported in part by a Grant-in-Aid for Creative
-0.06
+0.03
-0.07
+0.05
-0.11
+0.09
Scientific Research (16GS0206) from JSPS, and G-COE program in
chemistry at Nagoya University from the Ministry of Education,
Science, Sports and Culture, Japan.
OMe
Me +0.02
2s, R = (S)-MTPA
2r, R = (R)-MTPA
References and notes
Figure 4.
DdS–R values for the bis-MTPA derivatives of 2.
1. (a) Uemura, D.. In Bioorganic Marine Chemistry; Scheuer, P. J., Ed.; Springer:
Berlin, Heidelberg, 1991; Vol. 4, p 1; (b) Uemura, D. Chem. Rec. 2006, 6, 235; (c)
Uemura, D.; Kita, M.; Arimoto, H.; Kitamura, M. Pure Appl. Chem. 2009, 81, 1093.
2. Kita, M.; Ohishi, N.; Konishi, K.; Kondo, M.; Koyama, T.; Kitamura, M.; Yamada,
K.; Uemura, D. Tetrahedron 2007, 63, 6241.
3. Matsumori, N.; Kaneno, D.; Murata, M.; Nakamura, H.; Tachibana, K. J. Org.
Chem. 1999, 64, 866.
OMTPA
OMTPA
OMTPA
OMTPA
ˇ
4. Freire, F.; Manuel, J.; Quiná, E.; Riguera, R. J. Org. Chem. 2005, 70, 3778.
+
−
−
+
?
?
?
5. (a) Grubbs, R. H. Tetrahedron 2004, 60, 7117; (b) Williams, P. G.; Miller, E. D.;
Asolkar, R. N.; Jensen, P. R.; Fenical, W. J. Org. Chem. 2007, 72, 5025; (c) Mol, J.
C.; Buffon, R. J. Braz. Chem. Soc. 1998, 9, 1.
R2
−
R2
+
R1
+
R1
−
?
?
?
6. Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000,
122, 8168.
OMTPA
OMTPA
OMTPA
OMTPA
7. Han, C.; Uemura, D. Tetrahedron Lett. 2008, 49, 6988.
8. C14ÀC23 fragment 2: 1H NMR (800 MHz, CDCL3) d 5.86 (dd, J = 6.4, 15.8 Hz, 1H,
H16), 5.80 (m, 1H, H23), 5.68 (dd, J = 4.6, 15.8 Hz, 1H, H15), 5.61 (m, 2H, H19
and H20), 5.14 (m, 2H, C23CH2), 4.81 (d, J = 4.6 Hz, 1H, H14), 4.18 (m, 1H, H21),
3.96 (m, 1H, H17), 3.33 and 3.32 (s, 6H, C14-OMe  2), 2.34 and 2.31 (m, 3H,
H18 and H22a,b), 1.03 (d, J = 6.9 Hz, 1H, C18-Me); HR ESI-TOF-MS m/z
279.1579 (M+Na)+, calcd for C14H24O4Na: 279.1572.
−
−
−
−
+
+
+
+
R2
R1
?
R2
R1
−
+
?
?
?
Figure 5. Preditive
D
dS–R (+ or À) patterns for the bis-MTPA esters of acyclic
9. C14ÀC23 fragment bis-(S)-MTPA ester (2s): 1H NMR (800 MHz, CDCl3) d 7.50
(m, 4H, Ph), 7.39 (m, 6H, Ph), 5.70 (m, 1H, H23), 5.68 (dd, J = 5.5, 15.8 Hz, 1H,
H16), 5.64 (dd, J = 4.1, 15.8 Hz, 1H, H15), 5.63 (dd, J = 7.8, 15.2 Hz, 1H, H19),
5.46 (m, 2H, H20 and H21), 5.34 (t, J = 5.5 Hz, 1H, H17), 5.10 (m, 2H, C23CH2),
4.74 (d, J = 4.1 Hz, 1H, H14), 3.50 and 3.53 (s, 6H, C14-OMe  2), 2.54 (m, 1H,
H18), 2.39 and 2.43 (m, 2H, H22a,b), 0.97 (d, J = 6.9 Hz, 3H, C18-Me); HR ESI-
TOF-MS m/z 711.2262 (M+Na)+, calcd for C34H38F6O8Na: 711.2369.
10. C14ÀC23 fragment bis-(R)-MTPA ester (2r): 1H NMR (800 MHz, CDCl3) d 7.49
(m, 4H, Ph), 7.38 (m, 6H, Ph), 5.79 (dd, J = 5.5, 15.6 Hz, 1H, H16), 5.72 (dd,
J = 4.2, 15.6 Hz, 1H, H15), 5.70 (dd, J = 7.8, 15.6 Hz, 1H, H19), 5.59 (m, 1H, H23),
5.53 (dd, J = 7.4, 15.6 Hz, 1H, H20), 5.44 (m, 1H, H21), 5.40 (t, J = 5.5 Hz, 1H,
H17), 5.01 (m, 2H, C23CH2), 4.77 (d, J = 4.2 Hz, 1H, H14), 3.50 and 3.53 (s, 6H,
C14-OMe  2), 2.56 (m, 1H, H18), 2.33 and 2.37 (m, 2H, H22a,b), 0.95 (d,
J = 7.4 Hz, 3H, C18-Me); HR ESI-TOF-MS m/z 711.2341 (M+Na)+, calcd for
C34H38F6O8Na: 711.2369.
1,5-diols.
symbiodinolide (1) on the basis of J-based configuration analysis
and ROESY correlations. Using ethenolysis with Hoveyda-Grubbs
II catalyst, a degradation product C14ÀC23 2 was obtained from
1, and the absolute configurations of three chiral centers in 2 were
assigned as 17R, 18R, and 21R by the Mosher–Riguera method.
Further chemical degradation studies in order to obtain the new
fragments and a complete assignment of the absolute stereochem-
istry of symbiodinolide are currently underway.