collaboration supported in the US by the National Science
Foundation under grant CHE-0924620. We also acknowledge
support from the World Class University (WCU) Program
(R-31-2008-000-10055-0) in Korea.
Notes and references
z The local C2h symmetry of a 1,5-dioxynaphthalene unit can commute
as two different conformations19 with both the cis and trans isomers of
3
4+. In the case of the latter, the conformation shown in Scheme 1b is
predicted by quantum mechanical calculations to be the most stable.
1 (a) Y. Liu, A. H. Flood, R. M. Moskowitz and J. F. Stoddart,
Chem. Eur. J., 2005, 11, 369–385; (b) Y. Liu, S. Saha, S. A. Vignon,
A. H. Flood and J. F. Stoddart, Synthesis, 2005, 3437–3445.
2 Y. Liu, P. A. Bonvallet, S. A. Vignon, S. I. Khan and
J. F. Stoddart, Angew. Chem., Int. Ed., 2005, 44, 3050–3055.
3 (a) Y. Liu, S. A. Vignon, X. Zhang, K. N. Houk and
J. F. Stoddart, Chem. Commun., 2005, 3927–3929; (b) Y. Liu,
S. A. Vignon, X. Zhang, P. A. Bonvallet, S. I. Khan, K. N. Houk
and J. F. Stoddart, J. Org. Chem., 2005, 70, 9334–9344.
4 Y.-L. Zhao, A. Trabolsi and J. F. Stoddart, Chem. Commun., 2009,
4844–4846.
5 (a) B. Odell, M. V. Reddington, A. M. Z. Slawin, N. Spencer and
J. F. Stoddart, Angew. Chem., Int. Ed. Engl., 1988, 27, 1547–1550;
(b) M. Asakawa, W. Dehaen, G. L’abbe, S. Menzer, J. Nouwen,
F. M. Raymo, J. F. Stoddart and D. J. Williams, J. Org. Chem.,
1996, 61, 9591–9595; (c) C.-H. Sue, S. Basu, A. C. Fahrenbach,
A. K. Shveyd, S. K. Dey, Y. Y. Botros and J. F. Stoddart, Chem.
Sci., 2010, 1, 119–125.
Fig. 2 1H–1H gDQF COSY (600 MHz, CD3CN, 298 K) spectrum of
cis–3ꢀ4PF6 with selected correlations labeled. Through-bond correla-
tions are a key component to assigning each isomer.
6 C. Reuter, W. Wienand, C. Schmuck and F. Vogtle, Chem. Eur. J.,
2001, 7, 1728–1733.
7 (a) H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem.,
Int. Ed., 2001, 40, 2004–2021; (b) C. W. Tornøe, C. Christensen
and M. Meldal, J. Org. Chem., 2002, 67, 3057–3064.
8 O. Lukin, A. Godt and F. Vogtle, Chem. Eur. J., 2004, 10,
1878–1883.
9 R. S. Forgan, J.-P. Sauvage and J. F. Stoddart, Chem. Rev., 2011,
111, 5434–5464.
10 (a) C. H. Park and H. E. Simmons, J. Am. Chem. Soc., 1968, 90,
2431–2432; (b) B. Dietrich, J.-M. Lehn and J.-P. Sauvage, Tetra-
hedron Lett., 1969, 10, 2885–2888; (c) B. Dietrich, J.-M. Lehn and
J.-P. Sauvage, Tetrahedron Lett., 1969, 10, 2889–2892; (d) For a
discussion of macrobicyclic polyethers with bridgehead carbon
atoms, see: A. C. Coxon and J. F. Stoddart, J. Chem. Soc., Perkin
Trans. 1, 1977, 767–785.
11 P. A. S. Smith, J. H. Hall and R. O. Kan, J. Am. Chem. Soc., 1962,
84, 485–489.
12 M. A. Olson, A. Coskun, R. Klajn, L. Fang, S. K. Dey,
K. P. Browne, B. A. Grzybowski and J. F. Stoddart, Nano Lett.,
2009, 9, 3185–3190.
13 (a) D. H. Busch and N. A. Stephenson, Coord. Chem. Rev., 1990,
100, 119–154; (b) S. Anderson, H. L. Anderson and J. K.
M. Sanders, Acc. Chem. Res., 1993, 26, 469–475; (c) Templated
Organic Synthesis, ed. F. Diederich and P. J. Stang, Wiley-VCH,
Weinheim, 1999; (d) J. F. Stoddart and H.-R. Tseng, Proc. Natl.
Acad. Sci. U. S. A., 2002, 99, 4797–4800; (e) D. H. Busch, Top.
Curr. Chem., 2005, 249, 1–65; (f) K. E. Griffiths and J. F. Stoddart,
Pure Appl. Chem., 2008, 80, 485–506.
Fig. 3 A region of the NOESY (600 MHz, CD3CN, 298 K) spectrum
of cis–3ꢀ4PF6. Note that the black peaks are phased positive which
correspond to chemical exchange peaks with the uncomplexed species
and the red peaks are phased negative which correspond to positive
nOe’s of the Fo8. This region of the spectrum shows the through-space
correlations of the featured BIPY2+ protons a to the nitrogen and the
p-xylylene protons. These key correlations allow for the assignment of
the protons in this region. Furthermore, the chemical exchange peaks
that are boxed in green are a selection of the peaks which indicate that
the major species is in exchange with a minor one.
14 K. Mislow and M. Raban, Top. Stereochem., 1967, 1, 1–38.
15 H. L. Frisch and E. Wasserman, J. Am. Chem. Soc., 1961, 83,
3789–3974.
16 J. F. Stoddart, Chem. Soc. Rev., 2009, 38, 1802–1820.
17 (a) D. M. Walba, Tetrahedron, 1985, 41, 3161–3212;
(b) G. A. Breault, C. A. Hunter and P. C. Mayers, Tetrahedron,
1999, 55, 5265–5293; (c) J. S. Siegel, Science, 2004, 304, 1256–1258.
18 (a) G. Schill, Catenanes, Rotaxanes and Knots, Academic Press,
New York, 1971; (b) Catenanes, Rotaxanes and Knots—A Journey
Through the World of Molecular Topology, ed. C. O. Dietrich-
Buchecker and J.-P. Sauvage, Wiley-VCH, Weinheim, Germany,
1999.
chemistry9,17 is going to assume more and more importance in
the design and synthesis of compounds, such as Fo8s, which are
beyond just simple catenanes, rotaxanes, and knots.18
The research reported in this communication is based upon
the work supported under the auspices of an international
19 S. A. Vignon and J. F. Stoddart, Collect. Czech. Chem. Commun.,
2005, 70, 1493–1576.
c
11872 Chem. Commun., 2011, 47, 11870–11872
This journal is The Royal Society of Chemistry 2011