J.L. Stockdill et al. / Tetrahedron 65 (2009) 6571–6575
6575
Importantly, this result completes the synthesis of the carbocyclic
References and notes
core of zoanthenol, requiring just 17 steps from known Diels–Alder
adduct 11.
1. (a) Roa, C. B.; Anjaneyulu, A. S. R.; Sarma, N. S.; Venkateswarlu, Y.; Rosser, R. M.;
Faulkner, D. J.; Chen, M. H. M.; Clardy, J. J. Am. Chem. Soc. 1984, 106, 7983–7984;
(b) Roa, C. B.; Anjaneyula, A. S. R.; Sarma, N. S.; Venkatateswarlu, Y. J. Org. Chem.
1985, 50, 3757–3760; (c) Fukuzawa, S.; Hayashi, Y.; Uemura, D.; Nagatsu, A.;
Yamada, K.; Ijuin, Y. Heterocycl. Commun. 1995, 1, 207–214; (d) Atta-ur-Rahman;
Alvi, K. A.; Abbas, S. A.; Choudhary, M. I.; Clardy, J. Tetrahedron Lett. 1989, 30,
3. Conclusions
´
´
6825–6828; (e) Daranas, A. H.; Fernandez, J. J.; Gavın, J. A.; Norte, M. Tetrahe-
dron 1998, 54, 7891–7896; (f) Daranas, A. H.; Ferna´ndez, J. J.; Gavı´n, J. A.; Norte,
M. Tetrahedron 1999, 55, 5539–5546.
In summary, we have described an efficient synthetic approach
to the carbocyclic core of zoanthenol that addresses the demanding
combination of a fused polycyclic framework and multiple contig-
uous stereocenters. The synthetic approach is highlighted by
a versatile desymmetrization of a bis-quaternary meso anhydride
that enables access to either enantiomer of zoanthenol by selecting
the appropriate cinchona alkaloid. The resulting stereochemical
information is then relayed around the C ring by a series of dia-
stereoselective reactions. Additionally, good selectivity is observed
during the Grignard addition to couple the A and C rings, and the
superior directing ability of a silyl ether in the presence of a methyl
ether was established in arene bromination reactions. Finally, the
key radical cyclization occurs with excellent diastereoselectivity to
construct the third all-carbon quaternary center within a single six-
membered ring and establishes the correct relative stereochemis-
try for the tertiary center at the B–C ring junction. Overall, the
approach allows access to the challenging carbocyclic core of
zoanthenol in 17 steps.
2. Behenna, D. C.; Stockdill, J. L.; Stoltz, B. M. Angew. Chem., Int. Ed. 2008, 47, 2365–
2386 and references therein.
3. (a) Miyashita, M.; Sasaki, M.; Hattori, I.; Sakai, M.; Tanino, K. Science 2004, 305,
495–499; (b) Murata, Y.; Yamashita, D.; Kitahara, K.; Minasako, Y.; Nakazaki, A.;
Kobayashi, S. Angew. Chem., Int. Ed. 2008, 47, 1400–1403; (c) Yamashita, D.;
Murata, Y.; Hikage, N.; Takao, K.; Nakazaki, A.; Kobayashi, S. Angew. Chem., Int.
Ed. 2008, 47, 1403–1406.
4. Sugano, N.; Koizumi, Y.; Hirai, G.; Oguri, H.; Kobayashi, S.; Yamashita, S.;
Hirama, M. Chem. Asian J. 2008, 3, 1549–1557.
5. (a) Hikage, N.; Furukawa, H.; Takao, K.; Kobayashi, S. Tetrahedron Lett. 1998, 39,
6237–6240; (b) Hikage, N.; Furukawa, H.; Takao, K.; Kobayashi, S. Tetrahedron
Lett. 1998, 39, 6241–6244; (c) Hikage, N.; Furukawa, H.; Takao, K.; Kobayashi, S.
Chem. Pharm. Bull. 2000, 48, 1370–1372.
6. Williams, D. R.; Cortez, G. A. Tetrahedron Lett. 1998, 39, 2675–2678.
7. Birman, V. B.; Danishefsky, S. J. J. Am. Chem. Soc. 2002, 124, 2080–2081.
8. (a) For a review, see: Chen, Y.; McDaid, P.; Deng, L. Chem. Rev. 2003, 103, 2965–
2983; (b) For an application in synthesis, see: Starr, J. T.; Koch, G.; Carreira, E. M.
J. Am. Chem. Soc. 2000, 122, 8793–8794.
9. Treatment of 10 with catalytic quinine (10 mol %), pentamethylpiperidine
(1 equiv), and methanol for 18 days at À50 ꢀC provided half-ester 12 in 88%
yield and 70% ee.
10. In practice, high ee material was most readily accessible by advancing the 77%
ee material and recrystallizing at a later step. For the purpose of synthetic
explorations, racemic material was employed and could be accessed by use of
catalytic quinine (10 mol %) at ambient temperature with 1.1 equiv of DBU, 3–
5 equivalents MeOH, and 0.1 M toluene.
11. Petersen, E. A.; Overman, L. E. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 11943–11948.
12. Stockdill, J. L.; Behenna, D. C.; Stoltz, B. M. Tetrahedron Lett. 2009, 50, 3182–
3184.
13. Trost, B. M.; Masuyama, Y. Tetrahedron Lett. 1984, 25, 173–176.
14. Behenna, D. C.; Stockdill, J. L.; Stoltz, B. M. Angew. Chem., Int. Ed. 2007, 46, 4077–
4079.
15. Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277–7278.
16. (a) Carreno, M. C.; Ruano, J. L. G.; Sanz, G.; Toledo, M. A.; Urbano, A. J. Org. Chem.
1995, 60, 5328–5331; (b) Berthelot, J.; Guette, C.; Desbe`ne, P.-J.; Basselier, J.-J.
Can. J. Chem. 1989, 67, 2061–2066.
Acknowledgements
The authors wish to thank Novartis (graduate fellowship to
J.L.S.), the Philanthropic Education Organization (Scholar Award to
J.L.S.), the Fannie and John Hertz Foundation (graduate fellowship
to D.C.B.), Abbott, Amgen, Boehringer-Ingelheim, Bristol-Myers
Squibb, Merck, and Caltech for their generous financial support.
Additionally, we acknowledge Prof. Li Deng of Brandeis University
for the kind donation of O-(À)-(menthyl acetate)quinidine and for
helpful discussions.
17. Carreno, M. C.; Ruano, J. L. G.; Sanz, G.; Toledo, M. A.; Urbano, A. Synlett 1997,
1241–1242.
18. For an excellent review of intramolecular radical conjugate addition, see:
Zhang, W. Tetrahedron 2001, 57, 7237–7262.
Supplementary data
19. Rajamannar, T.; Balasubramanian, K. K. J. Chem. Soc., Chem. Commun. 1994,
25–26.
20. TBS groups removed from the figure for clarity.
Supplementary data associated with this article can be found in