Page 9 of 10
Journal of the American Chemical Society
Soc. 2016, 138, 1832. (e) Uraguchi, D.; Kinoshita, N.; Kizu, T.;
19. In the absence of catalyst, 10% product is observed (see
1
2
3
4
5
6
7
8
Ooi, T. Synergistic Catalysis of Ionic Brønsted Acid and
Photosensitizer for a Redox Neutral Asymmetric α-Coupling of
N-Arylaminomethanes with Aldimines. J. Am. Chem. Soc. 2015,
137, 13768. (f) Espelt, L. R.; McPherson, I. S.; Wiensch, E. M.;
Yoon, T. P. Enantioselective Conjugate Additions of α-Amino
Radicals via Cooperative Photoredox and Lewis Acid Catalysis.
J. Am. Chem. Soc. 2015, 137, 2452.
Table S2). Under our standard reaction conditions, the large
majority of visible photons are absorbed by Ir(ppy)3. However,
in the absence of Ir(ppy)3, an EDA complex between the DCB
and piperidine could result in the small amount of product
formed. For a similar result, see: Miao, M; Liao, L.-L.; Cao, G.-M.;
Zhou, W.-J.; Yu, D.-G. Visible-light-mediated external-
reductant-free reductive cross coupling of benzylammonium
salts with (hetero)aryl nitriles. Sci. China Chem. 2019, 62, 1519.
20. Shono, T.; Hamaguchi, H.; Matsumura, Y. Electroorganic
chemistry. XX. Anodic oxidation of carbamates. J. Am. Chem. Soc.
1975, 97, 4264.
21. The relative stereochemistry for the major and minor
diastereomers were determined by NOE correlations (see
Supporting Information).
22. Sakamoto, M.; Cai, X.; Kim, S. S.; Fujitsuka, M.; Majima, T.
Intermolecular Electron Transfer from Excited Benzophenone
Ketyl Radical. J. Phys. Chem. A 2007, 111, 223.
23. Ide, T.; Barham, J. P.; Fujita, M.; Kawato, Y.; Egami, H.;
Hamashima, Y. Regio- and chemoselective Csp3–H arylation of
benzylamines by single electron transfer/hydrogen atom
transfer synergistic catalysis. Chem. Sci. 2018, 9, 8453.
24. Prier, C. K.; MacMillan, D. W. C. Amine α-heteroaryla-
tion via photoredox catalysis: a homolytic aromatic substitu-
tion pathway. Chem. Sci. 2014, 5, 4173.
11. (a) Leitch, J. A.; Rogova, T.; Duarte, F.; Dixon, D. J.
Dearomative Photocatalytic Construction of Bridged 1,3-
Diazepanes. Angew. Chem. Int. Ed. 2020, 59, 4121. (b)
McManus, J. B.; Onuska, N. P. R.; Nicewicz, D. A. Generation and
Alkylation of α-Carbamyl Radicals via Organic Photoredox
Catalysis. J. Am. Chem. Soc. 2018, 140, 9056. (c) Rossolini, T.;
Leitch, J. A.; Grainger, R.; Dixon, D. J. Photocatalytic Three-
Component Umpolung Synthesis of 1,3-Diamines. Org. Lett.
2018, 20, 6794. (d) Aycock, R. A.; Pratt, C. J.; Jui, N. T.
Aminoalkyl Radicals as Powerful Intermediates for the
Synthesis of Unnatural Amino Acids and Peptides. ACS Catal.
2018, 8, 9115. (e) Leitch, J. A.; Fuentes de Arriba, A. L.; Tan, J.;
Hoff, O.; Martínez, C. M.; Dixon, D. J. Photocatalytic reverse
polarity Povarov reaction. Chem. Sci. 2018, 9, 6653. (f) Liu, J.;
Xie, J.; Zhu, C. Photoredox organocatalytic α-amino C(sp3)–H
functionalization for the synthesis of 5-membered heterocyclic
γ-amino acid derivatives. Org. Chem. Front. 2017, 4, 2433. (g)
Xuan, J.; Cheng, Y.; An, J.; Lu, L.-Q.; Zhang, X.-X.; Xiao, W.-J. Visible
light-induced intramolecular cyclization reactions of diamines:
a new strategy to construct tetrahydroimidazoles. Chem.
Commun. 2011, 47, 8337.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
25. Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R.
A.;
Malliaras,
G.
G.;
Bernhard,
S.
Single-Layer
Electroluminescent Devices and Photoinduced Hydrogen
Production from an Ionic Iridium(III) Complex. Chem. Mater.
2005, 17, 5712.
26. (a) Flamigni, L.; Barbieri, A.; Sabatini, C.; Ventura, B.;
Barigelletti, F. Photochemistry and Photophysics of
Coordination Compounds: Iridium. Top. Curr. Chem. 2007, 281,
143. (b) Dixon, I. M.; Collin, J.-P.; Sauvage, J.-P.; Flamigni, L.;
Encinas, S.; Barigelletti, F. A family of luminescent coordination
compounds: Iridium(III) polyimine complexes. Chem. Soc. Rev.
2000, 29, 385.
27. Mori, Y.; Sakaguchi, Y.; Hayashi, H. Magnetic Field Effects on
Chemical Reactions of Biradical Radical Ion Pairs in
Homogeneous Fluid Solvents. J. Phys. Chem. A 2000, 104, 4896.
28. Robinson, E. A.; Schulte-Frohlinde, D. Pulse Radiolysis of
1,4-Dicyanobenzene in Aqueous Solutions in the Presence and
Absence of Thallium(1) Ions. J. Chem. Soc., Faraday Trans. 1
1973, 69, 707.
29. Seo, E. T.; Nelson, R. F.; Fritsch, J. M.; Marcoux, L. S.; Leedy,
D. W.; Adams, R. N. Anodic Oxidation Pathways of Aromatic
Amines. Electrochemical and Electron Paramagnetic
Resonance Studies. J. Am. Chem. Soc. 1966, 88, 3498.
30. Pitre, S. P.; McTiernan, C. D.; Vine, W.; DiPucchio, R.; Grenier,
M.; Scaiano, J. C. Visible-Light Actinometry and Intermittent
Illumination as Convenient Tools to Study Ru(bpy)3Cl2
Mediated Photoredox Transformations. Sci. Rep. 2015, 5,
16397.
31. Cismesia, M. A.; Yoon, T. P. Characterizing chain processes
in visible light photoredox catalysis. Chem. Sci. 2015, 6, 5426.
32. Leifert, D.; Studer, A. The Persistent Radical Effect in
Organic Synthesis. Angew. Chem. Int. Ed. 2020, 59, 74.
33. Slinker, J. D.; Gorodetsky, A. A.; Lowry, M. S.; Wang, J.;
Parker, S.; Rohl, R.; Bernhard, S.; Malliaras, G. G. Efficient Yellow
Electroluminescence from a Single Layer of a Cyclometalated
Iridium Complex. J. Am. Chem. Soc. 2004, 126, 2763.
34. Singh, K.; Staig, S. J.; Weaver, J. D. Facile Synthesis of
Z-Alkenes via Uphill Catalysis. J. Am. Chem. Soc. 2014, 136,
5275.
12. Aminomethyl radical additions to the Karady−Beckwith
chiral dehydroalanine gave 5-oxazolidinones with high
diastereoselectivity; however, for aminoalkyl radical additions
providing α-branched amines, little to no diastereoselectivity
was observed at the branched site, see: Ref 11d.
13. For photoredox catalyzed generation of an iminium
intermediate followed by diastereoselective cyclization to an
imidazolidines, see Ref 11g.
14. Escoubet, S.; Gastaldi, S.; Vanthuyne, N.; Gil, G.; Siri, D.;
Bertrand, M. P. Thiyl Radical Mediated Racemization of
Benzylic Amines. Eur. J. Org. Chem. 2006, 3242.
15. See Scheme 3 in Ref 11e.
16. For diastereoselective synthesis by reversible C–C bond
formation by photoredox catalysis, see: (a) Stache, E. E.; Rovis,
T.; Doyle, A. G. Dual Nickel- and Photoredox-Catalyzed
Enantioselective Desymmetrization of Cyclic meso-
Anhydrides. Angew. Chem. Int. Ed. 2017, 56, 3679. (b) Keylor,
M. H.; Matsuura, B. S.; Griesser, M.; Chauvin, J.-P. R.; Harding, R.
A.; Kirillova, M. S.; Zhu, X.; Fischer, O. J.; Pratt, D. A.; Stephenson,
C. R. J. Synthesis of resveratrol tetramers via
a
stereoconvergent radical equilibrium. Science 2016, 354, 1260.
17. (a) Duttwyler, S.; Chen, S.; Takase, M. K.; Wiberg, K. B.;
Bergman, R. G.; Ellman, J. A. Proton Donor Acidity Controls
Selectivity in Nonaromatic Nitrogen Heterocycle Synthesis.
Science 2013, 339, 678. (b) Duttwyler, S.; Lu, C.; Rheingold, A.
L.; Bergman, R. G.; Ellman, J. A. Highly Diastereoselective
Synthesis of Tetrahydropyridines by
a C–H Activation–
Cyclization–Reduction Cascade. J. Am. Chem. Soc. 2012, 134,
4064. (c) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Synthesis of
Dihydropyridines and Pyridines from Imines and Alkynes via
C-H Activation. J. Am. Chem. Soc. 2008, 130, 3645.
18. Wiesenfeldt, M. P.; Nairoukh, Z.; Dalton, T.; Glorius, F.
Selective Arene Hydrogenation for Direct Access to Saturated
Carbo- and Heterocycles. Angew. Chem. Int. Ed. 2019, 58,
10460.
ACS Paragon Plus Environment