C O M M U N I C A T I O N S
Scheme 3. Demonstration of Peptide Dual Ligationa
Figure 2. HPLC monitoring of ligation between peptide 10b and ubi(1-76)-
MES at (bottom) 3 and (top) 45 min. Gradient: 0-36% buffer B in 18 min,
36-45% in 18 min. Peak a, peptide 10b; peak b, ubi(1-76)-MES; peak c,
ligation product 11b; peak *, unidentified. Ligation conditions: 6.6 mM 10b,
1.2 mM ubi(1-76)-MES, 6 M Gdn·HCl, 0.2 M phosphate, 60 mM TCEP,
pH 8.0, 37 °C.
a See the Supporting Information for experimental details and charac-
terization data.
11c in 90% yield by HPLC analysis. Free-radical desulfurization afforded
the final biotinylated peptide 12c in 80% yield based on HPLC analysis.
The above results show that in a unique one-stone-two-birds fashion,
a γ-SH group on an N-terminal lysine mediates facile chemical ligation
at both its R- and ε-amines. The unhindered nature of the two primary
amines likely accounts for the robustness of the ligation reactions. If used
without the second ligation step, our method would allow conventional
linear NCL at Lys, a notable expansion of the application scope of NCL
in view of the abundance of lysine in proteins. Through the use of the
dual ligation scheme, it is possible to synthesize complex protein molecules
that are acylated on specific lysine side chains. We believe that our method
will be particularly useful for the chemical synthesis of lysine-rich and
lysine-modified proteins.
efficiently, reaching completion in 1.5 h to give the product 11a in
92% yield by HPLC analysis. A control experiment performed with
thethioesterpeptideH-LSTEA-COSRandlysylpeptideH-KGAKAFA-
NH2 for 2 h showed no detectable amount (<2%) of direct aminolysis
at either the R- or ε-amine. This indicated the vital role of the γ-SH
group in mediating ligation at both the R- and ε-amino groups of the
4-mercoptolysine residue. Next, to verify whether our method can be
used for site-specific peptide ubiquitination, peptide 10b was reacted
with a large (76 amino acids) ubiquitin thioester, ubi(1-76)-CO-
-
SCH2CH2SO3 [ubi(1-76)-MES], generated by thiolysis of a
ubiquitin-intein fusion protein.11 As shown in Figure 2, ligation with
the ubiquitin thioester was complete within only 45 min, giving a very
clean product in >90% yield based on HPLC analysis. The efficiency
of the reaction in our dual NCL scheme makes it a particularly viable
method for the synthesis of complex protein conjugates such as
ubiquitinated proteins for the functional elucidation of such post-
translational modifications on lysine.
Acknowledgment. We thank A*Star of Singapore (BMRC 08/
1/22/19/588 to C.-F.L.) and Nanyang Technological University for
financial support.
Supporting Information Available: Experimental procedures and
compound characterization data. This material is available free of charge
References
(1) For reviews, see: (a) Dawson, P. E.; Kent, S. B. Annu. ReV. Biochem. 2000,
69, 923. (b) Tam, J. P.; Yu, Q.; Miao, Z. Biopolymers 1999, 51, 311. (c)
Nilsson, B. L.; Soellner, M. B.; Raines, R. T. Annu. ReV. Biophys. Biomol.
Struct. 2005, 34, 91. (d) Hahn, M. E.; Muir, T. W. Trends Biochem. Sci.
2005, 30, 26. (e) Kent, S. B. H. Chem. Soc. ReV. 2009, 38, 338.
(2) Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. H. Science 1994,
266, 776.
(3) (a) Tam, J. P.; Lu, Y.-A.; Liu, C.-F.; Shao, J. Proc. Natl. Acad. Sci. U.S.A.
1995, 92, 12485. (b) Durek, T.; Torbeev, V. Y.; Kent, S. B. H. Proc. Natl.
Acad. Sci. U.S.A. 2007, 104, 4846. (c) Boerema, D. J.; Tereshko, V. A.;
Kent, S. B. H. Pept. Sci. 2008, 90, 278. (d) Johnson, E. C. B.; Malito, E.;
Shen, Y.; Rich, D.; Tang, W.; Kent, S. B. H. J. Am. Chem. Soc. 2007,
129, 11480. (e) Pentelute, B. L.; Gates, Z. P.; Dashnau, J. L.; Vanderkooi,
J. M.; Kent, S. B. H. J. Am. Chem. Soc. 2007, 130, 9702.
(4) (a) Canne, L. E.; Bark, S. J.; Kent, S. B. H. J. Am. Chem. Soc. 1996, 118,
5891. (b) Low, D. W.; Hill, M. G.; Carrasco, M. R.; Kent, S. B. H.; Botti,
P. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 6554. (c) Offer, J.; Boddy,
C. N. C.; Dawson, P. E. J. Am. Chem. Soc. 2002, 124, 4642. (d) Wu, B.;
Chen, J.; Warren, J. D.; Chen, G.; Hua, Z.; Danishefsky, S. J. Angew. Chem.,
Int. Ed. 2006, 45, 4116. (e) Chen, G.; Warren, J. D.; Chen, J.; Wu, B.;
Wan, Q.; Danishefsky, S. J. J. Am. Chem. Soc. 2006, 128, 7460.
(5) Chatterjee, C.; McGinty, R. K.; Pellois, J.; Muir, T. W. Angew. Chem.,
Int. Ed. 2007, 46, 2814.
Figure 1. HPLC monitoring of ligation between H-LSTEL-COSR and peptide
8 at (bottom) 10 min and (top) 1 h. Gradient: 0-60% buffer B in 30 min.
Peak a, H-LSTEL-COSR; peak b, peptide 8; peak c, ligation product peptide
9b; peak d, H-LSTEL-COSBz; peak *, H-LSTEL-OH. Ligation conditions:
28 mM H-LSTEL-COSR, 20 mM 8, 6 M Gdn·HCl, 0.2 M phosphate, 60
mM TCEP, 1% benzyl mercaptan, pH 8.0, 37 °C.
To generate native Lys at the ligation junction, we first tried the
Raney nickel-mediated desulfurization method.7 Desulfurization of 11a
gave only a moderate yield of 44% (based on quantitative HPLC
analysis) after 8 h of reaction. Moreover, this metal-based method did
not work for 11b, which is much larger and more complex than 11a.
We then tried the recently developed free-radical desulfurization
approach.12 Desulfurization of 11b using VA-044 reached completion
within 5 h to give the final ubiquitinated peptide 12b, and the
conversion was near quantitative based on MS analysis (see the
Supporting Information).
(6) (a) Tam, J. P.; Yu, Q. Biopolymers 1998, 46, 319. (b) Saporito, A.; Marasco,
D.; Chambery, A.; Botti, P.; Monti, S. M.; Pedone, C.; Ruvo, M.
Biopolymers 2006, 83, 508.
(7) Yan, L. Z.; Dawson, P. E. J. Am. Chem. Soc. 2001, 123, 526.
(8) Crich, D.; Banerjee, A. J. Am. Chem. Soc. 2007, 129, 10064.
(9) (a) Haase, C.; Rohde, H.; Seitz, O. Angew. Chem., Int. Ed. 2008, 47, 6807.
(b) Chen, J.; Wan, Q.; Yuan, Y.; Zhu, J.; Danishefsky, S. J. Angew. Chem.,
Int. Ed. 2008, 47, 8521.
(10) Marin, J.; Didierjean, C.; Aubry, A.; Casimir, J.-R.; Briand, J.-P.; Guichard,
G. J. Org. Chem. 2004, 69, 130.
(11) Borodovsky, A.; Ovaa, H.; Kolli, N.; Gan-Erdene, T.; Wilkinson, K. D.;
Ploegh, H. L.; Kessler, B. M. Chem. Biol. 2002, 9, 1149.
To further test whether our method can be used for specific biotinylation
on the lysine side chain, peptide 10b was reacted with a biotin thioester.
The reaction was complete in 3 h and gave the biotinyl ligation product
(12) Wan, Q.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2007, 46, 9248.
JA905491P
9
J. AM. CHEM. SOC. VOL. 131, NO. 38, 2009 13593