5196
C. Laroche, S. M. Kerwin / Tetrahedron Letters 50 (2009) 5194–5197
dazo[1,5-a]imidazole structure 16 based on comparison of its
NMR spectral properties with that of 15. The 7,8-dihydroimi-
dazo[1,2-a]pyrazine structure of 17, obtained in 23% yield, was
determined by X-ray crystallography (Fig. 2).
Interestingly, in this case, the presumed intermediate sulfon-
amide anion undergoes both 5-exo-dig and 6-endo-dig cyclization
with no apparent selectivity for one mode versus the other.
3. Conclusion
The synthesis of 1-alkynylimidazoles with various substituents
on the 2-position has been accomplished.29 The strategy employed
allows the presence of different substituents on the carbon–carbon
triple bond and the imidazole core. In the case of 2-iodo deriva-
tives, a subsequent Sonogashira coupling was realized to achieve
the synthesis of previously inaccessible 1,2-dialkynylimidazoles.
The method developed in this Letter also provides a new, concise
route to the synthesis of the 5,7-dihydroimidazo[1,2-c]oxazole, 5-
benzylidine-6,7-dihydromidazo[1,5-a]imidazole, and 7,8-dihydro-
imidazo[1,2-a]pyrazine bicyclic ring systems.
Figure 1. Structure of 15 determined by X-ray crystallography. One of two non-
centrosymmetric molecules of 15 from the unit cell is shown. Displacement
ellipsoids are scaled to the 50% probability level.
uously assigned based on spectral data. Fortunately, the product
was crystalline and the structure solved by X-ray crystallography
was assigned as the 5,7-dihydroimidazo[1,2-c]oxazole 15 (Scheme
2, Fig. 1).
Acknowledgments
5,7-Dihydroimidazo[1,2-c]oxazoles have been reported a few
times in the literature for their biological properties and are gener-
ally prepared by a condensation reaction between 2-hydroxyme-
thylimidazoles and aldehydes.27 The formation of 15 can be
classified as a 5-exo-dig ring closure reaction of the intermediate
alcoholate onto the imidazole 1-alkynyl substituent.
The 2-lithio-1-phenylethynyl-1H-imidazole was also allowed to
react with N-benzylidenebenzenesulfonamide28 at À78 °C. The
solution was allowed to warm to À60 °C after the addition of the
sulfonimine and the reaction was quenched by the addition of
water (Scheme 3).
We are grateful to the Robert Welch Foundation (F-1298) and
the Texas Advanced Research Program (3658-003) for financial
support of this research. We want to thank M. Allison and E. N.
Chugh for their contributions to this work.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
Two products were formed, one of these products, obtained in
24% yield, was assigned the 5-benzylidine-6,7-dihydromi-
1. Cianchi, F.; Vinci, C. M.; Masini, E. Cancer Biol. Ther. 2008, 7, 36–37.
2. De Luca, L.; Curr. Med. Chem. 2006, 13, 1–23.
3. Haas, H. L.; Sergeeva, O. A.; Selbach, O. Physiol. Rev. 2008, 88, 1183–1241.
4. Masahiko, S. Med. Res. Rev. 2006, 26, 434–482.
5. Michnovicz, J. J.; Galbraith, R. A. Metabolism 1991, 40, 170–174.
6. Saeki, T.; Umezawa, H.; Tokieda-Fujishige, T.; Hori, M. J. Antibiot. 1974, 27, 225–
227.
7. Peixoto, F.; Camargos, A.; Duarte, G.; Linhares, I.; Bahamondes, L.; Petracco, A.
Int. J. Gynecol. Obstet. 2008, 102, 287–292.
8. Laroche, C.; Li, J.; Freyer, M. W.; Kerwin, S. M. J. Org. Chem. 2008, 73, 6462–6465.
9. Zhang, Y.; Hsung, R. P.; Zhang, X.; Huang, J.; Slafer, B. W.; Davis, A. Org. Lett.
2005, 7, 1047–1050.
i) n-BuLi, -78 ºC, 15 min
N
N
Ph
N
N
N
N
ii) PhCHNSO2Ph
-78 to -60 ºC
Ph
NSO2Ph
Ph
+
NSO2Ph
THF
Ph
Ph
17
16
1
Scheme 3. Direct route to 5-benzylidine-6,7-dihydromidazo[1,5-a]imidazole 16
and 7,8-dihydroimidazo[1,2-a]pyrazine 17.
10. Hoffmann, R. W.; Brüchner, D. B. New J. Chem. 2001, 25, 369–373.
11. Zhang, X.; Zhang, Y.; Huang, J.; Hsung, R. P.; Kutz, K. C. M.; Oppenheimer, J.;
Petersen, M. E.; Sagamanova, I. K.; Shen, L.; Tracey, M. R. J. Org. Chem. 2006, 71,
4170–4177.
12. Marion, F.; Couirillon, C.; Malacria, M. Org. Lett. 2003, 5, 5095–5097.
13. Couty, S.; Liegault, B.; Meyer, C.; Cossy, J. Tetrahedron 2006, 62, 3882–3895.
14. (a) Nadipuram, A. K.; Kerwin, S. M. Org. Lett. 2002, 4, 4543–4546; (b)
Nadipuram, A. K.; Kerwin, S. M. Synlett 2004, 8, 1404–1408; (c) Nadipuram,
A. K.; Kerwin, S. M. Tetrahedron Lett. 2006, 47, 353–356; (d) Nadipuram, A. K.;
Kerwin, S. M. Tetrahedron 2006, 62, 3798–3808.
15. (a) Deng, Y.; Hlasta, D. J. Tetrahedron Lett. 2002, 43, 189–192; (b) Deng, Y.;
Hlasta, D. J. Org. Lett. 2002, 4, 4017–4020; (c) Zificsak, C. A.; Hlasta, D. J.
Tetrahedron Lett. 2005, 46, 4789–4792.
16. For review see: Tertov, B. A.; Koshchienko, Y. V. Chem. Heterocycl. Compd. 1988,
24, 117–131.
17. (a) Kirk, K. L. J. Org. Chem. 1978, 43, 4381–4383; (b) Traylor, T. G.; Hill, K. W.;
Tian, Z.-Q. JACS 1988, 110, 5571–5573; (c) Knapp, S.; Albaneze, J.; Schugar, H. J.
J. Org. Chem. 1993, 58, 997–998; (d) Bahnu Prasad, A. S.; Stevenson, T. M.;
Citineni, J. R.; Nyzam, V.; Knochel, P. Tetrahedron 1997, 53, 7237–7254; (e)
Eriksen, B. L.; Morel, P. V. S.; Begtrup, M. J. Org. Chem. 1998, 63, 12–16; (f)
Schlegel, J.; Maas, G. Synthesis 1999, 1, 100–106; (g) Lang, P.; Magnin, G.;
Mathis, G.; Burger, A.; Biellman, J.-F. J. Org. Chem. 2000, 65, 7825–7832; (h)
Wang, B. B.; Smith, P. J. Tetrahedron Lett. 2003, 44, 8967–8969; (i) Park, S. B.;
Alper, H. Org. Lett. 2003, 5, 3209–3212; (j) Hamm, M. L.; Rajguru, S.; Downs, A.
M.; Cholera, R. JACS 2005, 127, 12220–12221; (k) Zhang, X.; Bernet, B.; Vasella,
A. Helv. Chim. Acta 2006, 89, 2861–2917; (l) Moreau, C.; Wagner, G. K.; Weber,
K.; Guse, A. H.; Potter, B. V. L. J. Med. Chem. 2006, 49, 5162–5176; (m) Cisar, J. S.;
Ferreras, J. A.; Soni, R. K.; Quadri, L. E. N.; Tan, D. S. JACS 2007, 129, 7752–7753;
Figure 2. Structure of 17 determined by X-ray crystallography. Displacement
ellipsoids are scaled to the 50% probability level.