Article
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 18 5601
significance for two different population variance models was
based upon the F distribution.54 Using this F test, a probability
greater than 95% (p < 0.05) was considered the criterion to
select a more complex model (cooperativity) over the simplest
one (noncooperativity). In all cases, a probability of less than
70% (p > 0.30) resulted when one model was not significantly
better than the other.
(10) Milligan, G. G-protein-coupled receptor heterodimers: pharma-
cology, function and relevance to drug discovery. Drug Discovery
Today 2006, 11, 541–549.
ꢀ
(11) Hillion, J.; Canals, M.; Torvinen, M.; Casado, V.; Scott, R.;
Terasmaa, A.; Hansson, A.; Watson, S.; Olah, M. E.; Mallol, J.;
Canela, E. I.; Zoli, M.; Agnati, L. F.; Ibanez, C. F.; Lluıs, C.;
´
ꢀ
Franco, R.; Ferre, S.; Fuxe, K. Coaggregation, cointernalization,
and codesensitization of adenosine A2A receptors and dopamine
D2 receptors. J. Biol. Chem. 2002, 277, 18091–18097.
cAMP Determination. HEK-293 cells, 48 h after transfection,
were preincubated with 50 μM zardaverine as phosphodiester-
ase inhibitor for 10 min at 37 ꢀC in serum-free medium contain-
ing 10 mM MgCl2 and 1.5 U/mL ADA (for A2AR). The ligands
were added sequentially at the concentrations indicated: 10 min
antagonists, 10-15 min agonists, and 15 min forskolin.
To stop the reaction, the cells were placed on ice, detached,
and washed twice in ice-cold PBS. After centrifugation at 2500g
for 5 min at 4 ꢀC, the pellet was resuspended with 200 μL ice-cold
HClO4 (4%) for 30 min and 1.5 M KOH was added to reach
neutral pH. Samples were centrifuged at 15000g for 30 min at
4 ꢀC and the supernatant was frozen at -20 ꢀC. The accumula-
tion of cAMP in the samples was measured by a [3H] cAMP
assay system as described in the manual from the manufacturer.
(12) Canals, M.; Marcellino, D.; Fanelli, F.; Ciruela, F.; de Benedetti,
P.; Goldberg, S. R.; Neve, K.; Fuxe, K.; Agnati, L. F.; Woods, A.
ꢀ
S.; Ferre, S.; Lluıs, C.; Bouvier, M.; Franco, R. Adenosine
´
A2A-dopamine D2 receptor-receptor heteromerization: quali-
tative and quantitative assessment by fluorescence and bio-
luminescence energy transfer. J. Biol. Chem. 2003, 278, 46741–
46749.
(13) Kamiya, T.; Saitoh, O.; Yoshioka, K.; Nakata, H. Oligomerization
of adenosine A2A and dopamine D2 receptors in living cells.
Biochem. Biophys. Res. Commun. 2003, 306, 544–549.
ꢀ
(14) Agnati, L. F.; Ferre, S.; Lluıs, C.; Franco, R.; Fuxe, K. Pharmacol.
´
Rev. 2003, 55, 509–550.
ꢀ
(15) Ferre, S.; Fredholm, B. B.; Morelli, M.; Popoli, P.; Fuxe, K.
Adenosine-dopamine receptor-receptor interactions as an inte-
grative mechanism in the basal ganglia. Trends Neurosci. 1997, 20,
482–487.
ꢀ
~
(16) Ferre, S; Ciruela, F; Woods, A. S.; Canals, M; Burgueno, J;
Marcellino, D; Karcz-Kubicha, M; Hope, B. T.; Morales, M;
Popoli, P; Goldberg, S. R.; Fuxe, K; Lluıs, C; Franco, R; Agnati,
´
L. F. Glutamate mGlu5-adenosine A2A-dopamine D2 receptor
interactions in the striatum. Implications for drug therapy in
neuropsychiatric disorders and drug abuse. Curr. Med. Chem.
2003, 3, 1–26.
Acknowledgment. We acknowledge the technical help
ꢀ
Laboratory, Barcelona University). This work was supported
by Grants from Spanish Ministery of Science and Innovation
(SAF2005-00170 and SAF2006-05481 (R.F.) and CTQ2005-
00315/BQU and CTQ2008-00177/BQU (M.R.)), grant
obtained from Jasmina Jimenez (Molecular Neurobiology
(17) Schiffmann, S. N.; Jacobs, O.; Vanderhaeghen, J. J. Striatal
restricted adenosine A2 receptor (RDC8) is expressed by enkepha-
lin but not by substance P neurons: an in situ hybridization
histochemistry study. J. Neurochem. 1991, 57, 1062–1067.
(18) Fink, J. S.; Weaver, D. R.; Rivkees, S. A.; Peterfreund, R. A.;
Pollack, A. E.; Adler, E. M.; Reppert, S. M. Molecular cloning of
the rat A2 adenosine receptor: selective co-expression with D2
dopamine receptors in rat striatum. Brain Res. Mol. Brain Res.
1992, 14, 186–195.
ꢀ
ꢀ
060110 from Fundacio La Marato de TV3 (R.F.) and CI-
BERBBN (F.A.) and CIBERNED (R.F.) from Instituto de
Salud Carlos III. R.H. thanks The Netherlands Organization
for Scientific Research for their financial support.
Supporting Information Available: Molecular docking stu-
dies, experimental description of the synthesis and characteriza-
tion of compounds 1, 2, and 39 and its intermediates, table
containing 3-26 compound purities determined by HPLC, 1H,
and 13C NMR spectra and HPLC chromatograms of com-
pounds 1, 2, and 39 and its intermediates, and 3-26 compound
HPLC chromatograms. This material is available free of charge
ꢀ
~
(19) Ferre, S.; Ciruela, F.; Canals, M.; Marcellino, D.; Burgueno, J.;
ꢀ
Casado, V.; Hillion, J.; Torvinen, M.; Fanelli, F.; de Benedetti, P.;
Goldberg, S. R.; Bouvier, M.; Fuxe, K.; Agnati, L. F.; Lluıs, C.;
´
Franco, R.; Woods, A. Adenosine A2A-dopamine D2 receptor-
receptor heteromers. Targets for neuropsychiatric disorders. Par-
kinsonism Relat. Disord. 2004, 10, 265–271.
ꢀ
(20) Fuxe, K.; Ferre, S.; Genedani, S.; Franco, R.; Agnati, L. F.
Adenosine receptor-dopamine receptor interactions in the basal
ganglia and their relevance for brain function. Physiol. Behav. 2007,
92, 210–217.
ꢀ
(21) Ferre, S.; Fuxe, K.; von, E. G.; Johansson, B.; Fredholm, B. B.
References
Adenosine-dopamine interactions in the brain. Neuroscience
1992, 51, 501–512.
(1) Bouvier, M. Oligomerization of G-protein-coupled transmitter
receptors. Nat. Rev. Neurosci. 2001, 2, 274–286.
(2) Park, P. S.; Filipek, S.; Wells, J. W.; Palczewski, K. Oligomeriza-
tion of G protein-coupled receptors: past, present, and future.
Biochemistry 2004, 43, 15643–15656.
(22) Bara-Jimenez, W.; Sherzai, A.; Dimitrova, T.; Favit, A.; Bibbiani,
F.; Gillespie, M.; Morris, M. J.; Mouradian, M. M.; Chase, T. N.
Adenosine A(2A) receptor antagonist treatment of Parkinson’s
disease. Neurology 2003, 61, 293–296.
(23) Hauser, R. A.; Hubble, J. P.; Truong, D. D. Randomized trial of
the adenosine A2A receptor antagonist istradefylline in advanced
PD. Neurology 2003, 61, 297–303.
(3) Fuxe, K.; Canals, M.; Torvinen, M.; Marcellino, D.; Terasmaa, A.;
Genedani, S.; Leo, G.; Guidolin, D.; az-Cabiale, Z.; Rivera, A.;
Lundstrom, L.; Langel, U.; Narvaez, J.; Tanganelli, S.; Lluıs, C.;
´
(24) Schwarzschild, M. A.; Agnati, L.; Fuxe, K.; Chen, J. F.; Morelli,
M. Targeting adenosine A2A receptors in Parkinson’s disease.
Trends Neurosci. 2006, 29, 647–654.
(25) Jacobson, K. A.; Xie, R.; Young, L.; Chang, L.; Liang, B. T. A
novel pharmacological approach to treating cardiac ischemia.
Binary conjugates of A1 and A3 adenosine receptor agonists. J.
Biol. Chem. 2000, 275, 30272–30279.
(26) Daniels, D. J.; Lenard, N. R.; Etienne, C. L.; Law, P. Y.; Roerig, S.
C.; Portoghese, P. S. Opioid-induced tolerance and dependence in
mice is modulated by the distance between pharmacophores in a
bivalent ligand series. Proc. Natl. Acad. Sci. U.S.A. 2005, 102,
19208–19213.
ꢀ
Ferre, S.; Woods, A.; Franco, R.; Agnati, L. F. Intramembrane
receptor-receptor interactions: a novel principle in molecular
medicine. J. Neural Transm. 2007, 114, 49–75.
ꢀ
ꢀ
(4) Carriba, P.; Navarro, G.; Ciruela, F.; Ferre, S.; Casado, V.; Agnati,
ꢀ
L.; Cortes, A.; Mallol, J.; Fuxe, K.; Canela, E. I.; Lluıs, C.; Franco,
´
R. Detection of heteromerization of more than two proteins by
sequential BRET-FRET. Nat. Methods 2008, 5, 727–733.
(5) Jordan, B. A.; Devi, L. A. G-protein-coupled receptor heterodi-
merization modulates receptor function. Nature 1999, 399, 697–
700.
(6) Terrillon, S.; Bouvier, M. Roles of G-protein-coupled receptor
dimerization. EMBO Rep. 2004, 5, 30–34.
(27) Jacobson, K. A.; Kirk, K. L.; Padgett, W. L.; Daly, J. W.
Functionalized Congeners of 1,3-Dialkylxanthines;Preparation
of Analogs with High-Affinity for Adenosine Receptors. J. Med.
Chem. 1985, 28, 1334–1340.
(28) Bakthavachalam, V.; Baindur, N.; Madras, B. K.; Neumeyer, J. L.
Fluorescent-probes for dopamine receptors;Synthesis and char-
acterization of fluorescein and 7-nitrobenz-2-oxa-1,3-diazol-4yl
conjugates of D1 and D2 receptor ligands. J. Med. Chem. 1991,
34, 3235–3241.
(7) Prinster, S. C.; Hague, C.; Hall, R. A. Heterodimerization of G
protein-coupled receptors: specificity and functional significance.
Pharmacol. Rev. 2005, 57, 289–298.
(8) George, S. R.; O’Dowd, B. F.; Lee, S. P. G-protein-coupled
receptor oligomerization and its potential for drug discovery.
Nat. Rev. Drug Discovery 2002, 1, 808–820.
(9) Maggio, R.; Novi, F.; Scarselli, M.; Corsini, G. U. The impact of
G-protein-coupled receptor hetero-oligomerization on function
and pharmacology. FEBS J. 2005, 272, 2939–2946.