LETTER
Enantioselective Approach to the C5–C8 Segment of Berkelic Acid
Hiersemann, M. Synlett 2007, 1683.
2135
attempts to effect this transformation using standard pro-
tocols were unsuccessful. Upon addition of lithium io-
dide, however, compound 17 was quickly formed in
moderate yield (61%). Unreacted dithiane 22 (19%) could
be reisolated.
(13) The relative and absolute configuration was assigned based
on the established stereochemical course of the CAGC. The
enantiomeric excess was determined by Mosher ester 1H
NMR analysis. To synthesize Mosher esters, aldehydes 14 or
18 were reduced to the corresponding primary alcohols with
NaBH4 in methanol, followed by esterification with
Mosher’s acid.17
(14) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.
(15) Zhou, J.; Snider, B. B. Org. Lett. 2007, 9, 2071.
(16) Onoe, A.; Uemura, S.; Okano, M. Bull. Chem. Soc. Jpn.
1974, 47, 2818.
(17) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512.
(18) a-Keto Ester 6: To a solution of [Cu{(S,S)-tert-Bu-
Box}(H2O)2](SbF6)2 (12; 81 mg, 0.094 mmol, 8 mol%) in
CH2Cl2 (3 mL, 3 mL/mmol 6) was added (Z,Z)-7 (0.5 g, 1.18
mmol, 1 equiv) in CH2Cl2 (3 mL, 3 mL/mmol 6) at r.t. The
solution was stirred for 24 h, then the solvent was evaporated
and the residue filtered through a short plug of silica gel
(cyclohexane–EtOAc, 1:1). Evaporation of the solvent and
purification by flash chromatography (cyclohexane–EtOAc,
50:1→20:1) furnished 6 (478 mg, 96%) as a clear oil.
Rf = 0.34 (cyclohexane–EtOAc, 10:1); 1H NMR (CDCl3,
400 MHz): d = 7.62–7.64 (m, 4 H), 7.36–7.45 (m, 6 H), 5.81
(ddd, J = 8.7, 10.3, 17.3 Hz, 1 H), 5.00–5.08 (m, 2 H), 3.80
(s, 3 H), 3.65–3.67 (m, 2 H), 3.56–3.63 (m, 1 H), 2.67–2.73
(m, 1 H), 1.11 (d, J = 6.8 Hz, 3 H), 1.04 (s, 9 H); 13C NMR
(CDCl3, 100 MHz): d = 196.7 (C), 161.8 (C), 136.8 (CH),
135.6 (4 × CH), 133.3 (C), 133.1 (C), 129.7 (2 × CH), 127.6
(4 × CH), 117.5 (CH2), 64.1 (CH2), 52.7 (CH3), 48.3 (CH),
42.6 (CH), 26.7 (3 × CH3), 19.2 (C), 12.5 (CH3); IR (neat):
2930, 2860, 1730, 1430 cm–1; Anal. Calcd for C25H32O4Si:
C, 70.72; H, 7.60. Found: C, 70.6; H, 7.6; [a]25D +38.1 (c 1.0,
CHCl3).
In summary, we have prepared diastereo- and enantiomer-
ically pure ketone 5, corresponding to the C5–C8 segment
of (–)-berkelic acid, using an eleven-step synthesis em-
ploying a catalytic asymmetric Gosteli–Claisen rear-
rangement as a key C–C connecting transformation.18 We
also prepared the C5–C10 segment 17, which could be
used to prepare the tetracyclic core of ent-berkelic acid 16
via an oxa-Pictet–Spengler reaction. We disclose our ob-
servation that a-substituted dithiane 22 does not react with
iodoacetaldehyde dimethyl acetal unless lithium iodide is
present.
Acknowledgment
Financial support by the DFG is gratefully acknowledged. N.S. is
the recipient of a DAAD fellowship.
References and Notes
(1) Stierle, A. A.; Stierle, D. B.; Kelly, K. J. Org. Chem. 2006,
71, 5357.
(2) (a) Nakajima, H.; Hamasaki, T.; Maeta, S.; Kimura, Y.;
Takeuchi, Y. Phytochemistry 1990, 29, 1739. (b)Nakajima,
H.; Matsumoto, R.; Kimura, Y.; Hamasaki, T. J. Chem. Soc.,
Chem. Commun. 1992, 1654. (c) Nakajima, H.; Fujimoto,
H.; Matsumoto, R.; Hamasaki, T. J. Org. Chem. 1993, 58,
4526. (d) Nakajima, H.; Fukuyama, K.; Fujimoto, H.; Baba,
T.; Hamasaki, T. J. Chem. Soc., Perkin Trans. 1 1994, 1865.
(3) Buchgraber, P.; Snaddon, T. N.; Wirtz, C.; Mynott, R.;
Goddard, R.; Fürstner, A. Angew. Chem. Int. Ed. 2008, 47,
8450.
(4) Wu, X.; Zhou, J.; Snider, B. B. Angew. Chem. Int. Ed. 2009,
48, 1283.
(5) (a) Hoekstra, R.; Eskens, F. A. L. M.; Verweij, J. Oncologist
2001, 6, 415. (b) Coussens, L. M.; Fingleton, B.; Matrisian,
L. M. Science 2002, 295, 2387.
a-Keto Ester 19: To a solution of [Cu{(S,S)-tert-Bu-
Box}(H2O)2](SbF6)2 (12, 384 mg, 0.44 mmol, 8 mol%) in
CF3CH2OH (11 mL, 2 mL/mmol 7) was added (Z,Z)-7 (2.36
g, 5.55 mmol, 1 equiv) in CH2Cl2 (17 mL, 3 mL/mmol 7) at
r.t. The solution was stirred for 24 h, then the solvent was
evaporated and the residue filtered through a short plug of
silica gel (cyclohexane–EtOAc, 1:1). Evaporation of the
solvent and purification by flash chromatography
(cyclohexane–EtOAc, 50:1→20:1) furnished 19 (2.24 g,
95%) as a clear oil. Rf = 0.34 (cyclohexane–EtOAc, 10:1);
1H NMR (CDCl3, 400 MHz): d = 7.62–7.64 (m, 4 H), 7.36–
7.45 (m, 6 H), 5.54 (ddd, J = 17.1, 10.4, 9.3 Hz, 1 H), 4.98–
5.08 (m, 2 H), 3.80 (s, 3 H), 3.57–3.66 (m, 3 H), 2.75–2.83
(m, 1 H), 1.03–1.07 (m, 12 H); 13C NMR (CDCl3, 100
MHz): d = 196.6 (C), 161.7 (C), 135.5 (4 × CH), 135.0 (CH),
133.2 (C), 133.1 (C), 129.7 (2 × CH), 127.6 (4 × CH), 118.5
(CH2), 65.3 (CH2), 52.7 (CH3), 48.0 (CH), 42.4 (CH), 26.7
(3 × CH3), 19.2 (C), 12.4 (CH3); IR (neat): 2930, 2860, 1730,
1430 cm–1; Anal. Calcd for C25H32O4Si: C, 70.72; H, 7.60.
Found: C, 70.8; H, 7.5; [a]25D +4.3 (c 0.99, CHCl3).
Ketone 5: To a solution of 15 (1.1 g, 2.87 mmol, 1 equiv) in
CH2Cl2 (5.7 mL, 2 mL/mmol) was added pyridine (0.91 g,
11.5 mmol, 4.0 equiv) and Dess–Martin periodinane (1.6 g,
3.8 mmol, 1.3 equiv). The white suspension was stirred at r.t.
for 5 h before being quenched with sat. Na2S2O3. The phases
were separated, and the aqueous phase was washed with
CH2Cl2. The combined organic layers were dried (MgSO4),
concentrated under reduced pressure and the crude product
was purified by flash chromatography (cyclohexane–
EtOAc, 20:1) to yield 5 (0.98 g, 89%) as a colorless oil.
Rf = 0.27 (cyclohexane–EtOAc, 20:1); 1H NMR (CDCl3,
400 MHz): d = 7.64–7.66 (m, 4 H), 7.37–7.45 (m, 6 H),
5.77–5.86 (m, 1 H), 5.00–5.08 (m, 2 H), 3.67 (d, J = 5.2 Hz,
(6) Hu, J.; Van den Steen, P. E.; Sang, Q.-X. A.; Opdenakker, G.
Nat. Rev. Drug Discovery 2007, 6, 480.
(7) McOmie, J. F. W.; Turner, A. B.; Tute, M. S. J. Chem. Soc.
C 1966, 1608.
(8) (a) Inagaki, M.; Haga, N.; Kobayashi, M.; Ohta, N.; Kamata,
S.; Tsuri, T. J. Org. Chem. 2002, 67, 125. (b) Zjawiony,
J. K.; Bartyzel, P.; Hamann, M. T. J. Nat. Prod. 1998, 61,
1502.
(9) Hiersemann, M. Synthesis 2000, 1279.
(10) Preparative HPLC conditions: Nucleosil 50-5; 32 × 237
mm; heptane–EtOAc, 25:1; 26 mL/min; tR(Z,Z) = 31.5 min,
tR(E,Z) = 38.0 min; baseline separation with 200 mg/
injection.
(11) Evans, D. A.; Burgey, C. S.; Paras, N. A.; Vojkovsky, T.;
Tregay, S. W. J. Am. Chem. Soc. 1998, 120, 5824.
(12) (a) Abraham, L.; Czerwonka, R.; Hiersemann, M. Angew.
Chem. Int. Ed. 2001, 40, 4700. (b) Abraham, L.; Körner,
M.; Schwab, P.; Hiersemann, M. Adv. Synth. Catal. 2004,
346, 1281. (c) Abraham, L.; Körner, M.; Hiersemann, M.
Tetrahedron Lett. 2004, 45, 3647. For applications of the
CAGC in total synthesis, see: (d) Pollex, A.; Hiersemann,
M. Org. Lett. 2005, 7, 5705. (e) Körner, M.; Hiersemann,
M. Org. Lett. 2007, 9, 4979. (f) Wang, Q.; Millet, A.;
Synlett 2009, No. 13, 2133–2136 © Thieme Stuttgart · New York