T.-A. Liu and R.-S. Liu, J. Org. Chem., 2008, 73, 8479;
(e) X.-Y. Liu and C.-M. Che, Angew. Chem., Int. Ed., 2008, 47,
3805; (f) T. Jin and Y. Yamamoto, Org. Lett., 2008, 10, 3137;
(g) M.-C. Cordonnier, A. Blanc and P. Pale, Org. Lett., 2008, 10,
1569; (h) G. Li, X. Huang and L. Zhang, J. Am. Chem. Soc., 2008,
130, 6944; (i) S. G. Sethofer, S. T. Staben, O. Y. Hung and
F. D. Toste, Org. Lett., 2008, 10, 4315; (j) D. J. Gorin, I. D. G.
Watson and F. D. Toste, J. Am. Chem. Soc., 2008, 130, 3736;
(k) P. H.-Y. Cheong, P. Morganelli, M. R. Luzung, K. N. Houk
and F. D. Toste, J. Am. Chem. Soc., 2008, 130, 4517; (l) I. D. G.
Watson, S. Ritter and F. D. Toste, J. Am. Chem. Soc., 2009, 131,
2056.
4 For selected recent examples of silver-catalyzed alkyne activation,
see: (a) H. O. Oh, H. J. Yi and J. H. Lee, New J. Chem., 2007, 31,
835; (b) W. Yamada, Y. Sugawara, H. M. Cheng, T. Ikeno and
T. Yamada, Eur. J. Org. Chem., 2007, 2604; (c) T. Godet,
C. Vaxelaire, C. Michel, A. Milet and P. Belmont, Chem.–Eur.
J., 2007, 13, 5632.
5 (a) T. Yao, X. Zhang and R. C. Larock, J. Am. Chem. Soc., 2004,
126, 11164; (b) T. Yao, X. Zhang and R. C. Larock, J. Org. Chem.,
2005, 70, 7679; (c) J. Zhang and H. G. Schmalz, Angew. Chem., Int.
Ed., 2006, 45, 6704; (d) S. F. Kirsch, J. T. Binder, C. Liebert and
´
Scheme 4 Proposed reaction mechanisms.
H. Menz, Angew. Chem., Int. Ed., 2006, 45, 5878; (e) Y. Liu,
M. L. S. Guo, H. Tu, Y. Zhou and H. Gao, Org. Lett., 2006, 8,
3445; (f) N. Asao, K. Takahashi, S. Lee, T. Kasahara and
Y. Yamamoto, J. Am. Chem. Soc., 2002, 124, 12650;
(g) N. Asao, T. Nogami, S. Lee and Y. Yamamoto, J. Am. Chem.
Soc., 2003, 125, 10921; (h) N. Asao, H. Aikawa and Y. Yamamoto,
J. Am. Chem. Soc., 2004, 126, 7458; (i) K. Sato, N. Asao and
Y. Yamamoto, J. Org. Chem., 2005, 70, 8977; (j) N. Asao, K. Sato,
A. Menggenbateer and Y. Yamamoto, J. Org. Chem., 2005, 70,
3682; (k) G. Dyker, D. Hildebrandt, J. Liu and K. Merz, Angew.
Chem., Int. Ed., 2003, 42, 4399; (l) G. Dyker and D. Hildebrandt,
J. Org. Chem., 2005, 70, 6093; (m) D. Hildebrandt and G. Dyker,
J. Org. Chem., 2006, 71, 6728; (n) N. T. Patil, N. K. Pahadi and
Y. Yamamoto, J. Org. Chem., 2005, 70, 10096.
6 (a) L.-J. Lin, G. Topcu, H. Lotter, N. Ruangrungsi, H. Wagner,
J. M. Pezzuto and G. A. Cordell, Phytochemistry, 1992, 81, 4333;
(b) J. D. Townsend, A. R. Williams, A. J. Angel, A. E. Finefrock
and C. F. Beam, Synth. Commun., 2000, 30, 689; (c) S. Ruchirawat
and N. Thasana, Synth. Commun., 2001, 31, 1765.
7 (a) F. Bourelle-Wargnier, M. Vincent and J. Chuche, J. Chem.
Soc., Chem. Commun., 1979, 584; (b) F. Bourelle-Wargnier,
M. Vincent and J. Chuche, J. Org. Chem., 1980, 45, 428;
(c) K. Ohe, T. Yokoi, K. Miki, F. Nishino and S. Uemura,
J. Am. Chem. Soc., 2002, 124, 526.
Scheme 5 Tandem reactions of cis-1j.
Further investigation showed that when there was a ligand
atom near the triple bond, the Au-catalyzed reaction could
also undergo a 6-endo-dig cyclization to give the same product
as the Ag-catalyzed reaction. The substrate cis-1j with a C-1
thienyl group transformed into the phenol product 3j under
Au(I) catalysis, probably because in this case the Au atom
would coordinate with both the sulfur atom and the triple
bond to trigger a 6-endo-dig cyclization process (Scheme 5).
In summary, we have developed two transition-metal
catalyzed tandem reactions of cis-2-acyl-1-alkynyl-1-aryl cyclo-
propanes. These reactions can be tuned by using gold(I) or
silver(I) as the catalyst. From common substrates, structurally
divergent compounds can be readily synthesized by our
tandem protocols.
8 (a) D. Karl, U. Wilfried and T. Heinz, Chem. Ber., 1967, 100, 132;
(b) L. Liu, Y. Zhang and B. Xin, J. Org. Chem., 2006, 71, 3994.
9 A. B. Charette, H. Juteau, H. Lebel and C. Molinaro, J. Am.
Chem. Soc., 1998, 120, 11943, and references therein.
10 (a) B. Gabriele, G. Salerno and E. Lauria, J. Org. Chem., 1999, 64,
7687, and references therein; (b) S.-H. Wang, Y.-Q. Tu, P. Chen,
X.-D. Hu, F.-M. Zhang and A.-X. Wang, J. Org. Chem., 2006, 71,
4343.
Notes and references
11 2i and 4i were obtained as inseparable mixtures and identified by
comparing their spectra with 2a and 4a. 2a could be converted
completely to 4a by heating.
1 For recent reviews on gold-catalyzed reactions, see: (a) A. S. K.
Hashmi, Chem. Rev., 2007, 107, 3180; (b) D. J. Gorin and
F. D. Toste, Nature, 2007, 446, 395; (c) A. M. Echavarren and
E. Jime
C. Brouwer and C. He, Chem. Rev., 2008, 108, 3239;
(e) E. Jimenez-Nunez and A. M. Echavarren, Chem. Rev., 2008,
´
nez-Nu´ nez, Chem. Commun., 2007, 333; (d) Z. Li,
´
´
108, 3326; (f) D. J. Gorin, B. D. Sherry and F. D. Toste, Chem.
Rev., 2008, 108, 3351.
2 For recent reviews on silver-catalyzed reactions, see: (a) U. Halbes-
Letinois, J. M. Weibel and P. Pale, Chem. Soc. Rev., 2007, 36, 759;
(b) J. M. Weibel, A. Blanc and P. Pale, Chem. Rev., 2008, 108,
3149.
12 This major by-product might be formed from the intermediate 12i
3 For selected very recent examples of gold-catalyzed alkyne
activation, see: (a) G.-Y. Lin, C.-W. Li, S.-H. Hung and
R.-S. Liu, Org. Lett., 2008, 10, 5059; (b) C. Zhang, D.-M. Cui,
L.-Y. Yao, B.-S. Wang, Y.-Z. Hu and T. Hayashi, J. Org. Chem.,
2008, 73, 7811; (c) Y. Zou, D. Garayalde, Q. Wang, C. Nevado and
A. Goeke, Angew. Chem., Int. Ed., 2008, 47, 10264; (d) J.-M. Tang,
13 A. S. K. Hashmi, T. M. Frost and J. W. Bats, J. Am. Chem. Soc.,
2000, 122, 11553.
ꢀc
This journal is The Royal Society of Chemistry 2009
4728 | Chem. Commun., 2009, 4726–4728