Macromolecules
Article
memory windows of the nanowires devices using the electret of
PI(APSP-6FDA), PI(APST-6FDA), and PI(ODA-6FDA) are
82, 64, and 43 V, respectively. This is probably due to the
enhanced electrical field of the nanowires in the interface. The
electric field of nanowires was shown to be much higher than
that of thin film because the electric field was inverse
proportional to the diameter.50 Consequently, the high electric
field of nanowires led to the OFET memory device with better
performances compared to the thin film device.
REFERENCES
■
(1) Yang, Y.; Ouyang, J.; Ma, L. P.; Tseng, R. J. H.; Chu, C. W. Adv.
Funct. Mater. 2006, 16, 1001.
(2) Cho, B.; Song, S.; Ji, Y.; Kim, T.-W.; Lee, T. Adv. Funct. Mater.
2011, 21, 2806.
(3) Ling, Q.-D.; Liaw, D.-J.; Zhu, C.; Chan, D. S.-H.; Kang, E.-T.;
Neoh, K.-G. Prog. Polym. Sci. 2008, 33, 917.
(4) Guo, Y.; Yu, G.; Liu, Y. Adv. Mater. 2010, 22, 4427.
(5) Sekitani, T.; Yokota, T.; Zschieschang, U.; Klauk, H.; Bauer, S.;
Takeuchi, K.; Takamiya, M.; Sakurai, T.; Someya, T. Science 2009, 326,
1516.
(6) Guo, Y.; Di, C.-a.; Ye, S.; Sun, X.; Zheng, J.; Wen, Y.; Wu, W.; Yu,
G.; Liu, Y. Adv. Mater. 2009, 21, 1954.
(7) Schroeder, R.; Majewski, L. A.; Grell, M. Adv. Mater. 2004, 16,
633.
(8) Singh, T. B.; Marjanovic, N.; Matt, G. J.; Sariciftci, N. S.;
Schwodiauer, R.; Bauer, S. Appl. Phys. Lett. 2004, 85, 5409.
(9) Leong, W. L.; Lee, P. S.; Lohani, A.; Lam, Y. M.; Chen, T.;
Zhang, S.; Dodabalapur, A.; G. Mhaisalkar, S. Adv. Mater. 2008, 20,
2325.
(10) Leong, W. L.; Mathews, N.; Mhaisalkar, S.; Lam, Y. M.; Chen,
T.; Lee, P. S. J. Mater. Chem. 2009, 19, 7354.
(11) Leong, W. L.; Mathews, N.; Tan, B.; Vaidyanathan, S.; Dotz, F.;
Mhaisalkar, S. J. Mater. Chem. 2011, 21, 8971.
(12) Baeg, K.-J.; Noh, Y.-Y.; Sirringhaus, H.; Kim, D.-Y. Adv. Funct.
Mater. 2010, 20, 224.
(13) Liu, B.; McCarthy, M. A.; Rinzler, A. G. Adv. Funct. Mater. 2010,
20, 3440.
(14) Baeg, K. J.; Noh, Y. Y.; Ghim, J.; Kang, S. J.; Lee, H.; Kim, D. Y.
Adv. Mater. 2006, 18, 3179.
(15) Baeg, K.-J.; Noh, Y.-Y.; Ghim, J.; Lim, B.; Kim, D.-Y. Adv. Funct.
CONCLUSIONS
■
We have successfully synthesized two new donor−acceptor PIs,
PI(APSP-6FDA) and PI(APST-6FDA), as polymer electrets for
BPE-PTCDI-based OFET memory devices. The theoretical
and experimental results showed the order of the electron-
donating ability selenophene > thiophene> oxidianiline and
resulted in the degree of intramolecular charge transfer in PIs,
APSP > APST > ODA. The grain sizes of BPE-PTCDI grown
on the PI(APSP-6FDA), PI(APST-6FDA), and PI(ODA-
6FDA) surfaces are 205, 136, and 73 nm, respectively,
attributed to the hydrophobicity of the PIs. The BPE-PTCDI
OFET memory device based on the PI(APSP-6FDA) electret
exhibited the highest field-effect mobility and the largest
memory window compared to the others because the strong
electron-donating led to the efficient charge transfer form BPE-
PTCDI to PI(APSP-6FDA), and resulted in largest shifts of
threshold voltages. Moreover, PI(APSP-6FDA) or PI (APST-
6FDA) transferred the charges from BPE-PTCDI to electrets
easier than the oxidianiline moiety of PI(ODA-6FDA).
Furthermore, due to the heavy-atom effect, the selenophene
moiety is the stronger donor than thiophene moiety, leading to
the more stabilized charge-transferred states in PI(APSP-
6FDA). Besides, the BPE-PTCDI nanowires based OFET
memory device exhibited higher OFET mobility and memory
window compared to the thin film device. The present study
suggested that the donor−acceptor polyimide electrets could
have potential applications for high performance nonvolatile
OFET memory devices.
Mater. 2008, 18, 3678.
(16) Ling, Q.-D.; Chang, F.-C.; Song, Y.; Zhu, C.-X.; Liaw, D.-J.;
Chan, D. S.-H.; Kang, E.-T.; Neoh, K.-G. J. Am. Chem. Soc. 2006, 128,
8732.
(17) Ouyang, J.; Chu, C.-W.; Szmanda, C. R.; Ma, L.; Yang, Y. Nat.
Mater. 2004, 3, 918.
(18) Wei, D.; Baral, J. K.; Osterbacka, R.; Ivaska, A. J. Mater. Chem.
2008, 18, 1853.
(19) Fang, Y.-K.; Liu, C.-L.; Li, C.; Lin, C.-J.; Mezzenga, R.; Chen,
W.-C. Adv. Funct. Mater. 2010, 20, 3012.
(20) Kuorosawa, T.; Chueh, C.-C.; Liu, C.-L.; Higashihara, T.; Ueda,
M.; Chen, W.-C. Macromolecules 2010, 43, 1236.
(21) Naber, R. C. G.; Tanase, C.; Blom, P. W. M.; Gelinck, G. H.;
Marsman, A. W.; Touwslager, F. J.; Setayesh, S.; de Leeuw, D. M. Nat.
Mater. 2005, 4, 243.
(22) Leong, W. L.; Mathews, N.; Tan, B.; Vaidyanathan, S.; Dotz, F.;
Mhaisalkar, S. J. Mater. Chem. 2011, 21, 5203.
(23) Hsu, J.-C.; Lee, W.-Y.; Wu, H.-C.; Sugiyama, K.; Hirao, A.;
Chen, W.-C. J. Mater. Chem. 2012, 22, 5820.
ASSOCIATED CONTENT
■
S
* Supporting Information
NMR spectra of the monomers, APSP and APST, FTIR spectra
of PI(APSP-6FDA) and PI(APST-6FDA), molecular orbitals of
the PI(APST-6FDA) and PI(ODA-6FDA), contact angles of
PI(APSP-6FDA), PI(APST-6FDA), and PI(ODA-6FDA),
atomic force microscopy (AFM) topographies of PI(APSP-
6FDA), PI(APST-6FDA), and PI(ODA-6FDA) spin-coated on
bare SiO2 substrates, output characteristics of the OFET device,
and the shifted I−V curves. This material is available free of
(24) Mal’tsev, E. I.; Brusentseva, M. A.; Lypenko, D. A.; Berendyaev,
V. I.; Kolesnikov, V. A.; Kotov, B. V.; Vannikov, A. V. Polym. Adv.
Technol. 2000, 11, 325.
(25) Muhlbacher, D.; Brabec, C. J.; Sariciftci, N. S.; Kotov, B. V.;
̈
Berendyaev, V. I.; Rumyantsev, B. M.; Hummelen, J. C. Synth. Met.
2001, 121, 1609.
AUTHOR INFORMATION
(26) Wang, Z. Y.; Qi, Y.; Gao, J. P.; Sacripante, G. G.; Sundararajan,
P. R.; Duff, J. D. Macromolecules 1998, 31, 2075.
(27) Tian, G.; Wu, D.; Qi, S.; Wu, Z.; Wang, X. Macromol. Rapid
■
Corresponding Author
Commun. 2011, 32, 384.
(28) Liu, Y.-L.; Wang, K.-L.; Huang, G.-S.; Zhu, C.-X.; Tok, E.-S.;
Neoh, K.-G.; Kang, E.-T. Chem. Mater. 2009, 21, 3391.
(29) Wang, K.-L.; Liu, Y.-L.; Shih, I. H.; Neoh, K.-G.; Kang, E.-T. J.
Polym. Sci., Part A: Polym. Chem. 2010, 48, 5790.
Notes
The authors declare no competing financial interest.
(30) Liu, C.-L.; Kurosawa, T.; Yu, A.-D.; Higashihara, T.; Ueda, M.;
Chen, W.-C. J. Phys. Chem. C 2011, 115, 5930.
(31) Lee, W.-Y.; Kurosawa, T.; Lin, S.-T.; Higashihara, T.; Ueda, M.;
Chen, W.-C. Chem. Mater. 2011, 23, 4487.
ACKNOWLEDGMENTS
■
Financial support from National Science Council of Taiwan is
highly appreciated.
6955
dx.doi.org/10.1021/ma301326r | Macromolecules 2012, 45, 6946−6956